Granule Size Distribution Influence on the Nanocomposite Magneto-Optical Properties

Authors: Yurasov A.N., Yashin M.M., Gladyshev I.V., Ganshina E.A., Kanazakova E.S., Saifulina D.A., Simdyanova M.A. Published: 10.11.2023
Published in issue: #5(110)/2023  
DOI: 10.18698/1812-3368-2023-5-63-72

Category: Physics | Chapter: Crystallography, Physics of Crystals  
Keywords: bruggeman approximation, ferromagnetic nanocomposite, equatorial Kerr effect, spectral dependence, effective medium, lognormal distribution


The paper considers the size effects influence, i.e., the granule size distribution, on the nanocomposite magneto-optical properties. Calculations were obtained within the framework of the Bruggeman effective medium approximation, which described the studied nanostructures properties within average concentrations of the metal component in the non-metal matrix. Spectral dependences of the Kerr magneto-optical equatorial effect for the nano-composites (CoFeZr)x(Al2O3)1-x were studied at different values of the x metal component volumetric concentration. During simulation, tensor averaging in the metal component dielectric permeability with the lognormal distribution was taken into account. The results obtained ensure perfect description of the experimental data. The solved problem is significant in studying magneto-optical, optical and transport phenomena in the nanocomposites. Results could be introduces in the promising electronic devices, as well as in the non-contact methods for studying nanostructures

Please cite this article in English as:

Yurasov A.N., Yashin M.M., Gladyshev I.V., et al. Granule size distribution influence on the nanocomposite magneto-optical properties. Herald of the Bauman Moscow State Technical University, Series Natural Sciences, 2023, no. 5 (110), pp. 63--72 (in Russ.). DOI: https://doi.org/10.18698/1812-3368-2023-5-63-72


[1] Rathore A.K., Pati S.P., Ghosh M., et al. Effect of ZnO coating on two different sized α-Fe nanoparticles: synthesis and detailed investigation of their structural, optical, hyperfine and magnetic characteristics. J. Mater. Sci.: Mater. Electron., 2017, vol. 28, no. 9, pp. 6950--6958. DOI: https://doi.org/10.1007/s10854-017-6395-7

[2] Chigirev D.A., Sokolova I.M., Bol’shakov M.N., et al. Heat resistance and electrophysical characteristics of polyheteroarylenes and ferroelectric--polymer film composites based on them. Russ. J. Appl. Chem., 2020, vol. 93, no. 2, pp. 188--196. DOI: https://doi.org/10.1134/S1070427220020056

[3] Gan’shina E.A., Vashuk M.V., Vinogradov A.N., et al. Evolution of the optical and magnetooptical properties of amorphous metal-insulator nanocomposites. J. Exp. Theor. Phys., 2004, vol. 98, no. 5, pp. 1027--1036. DOI: https://doi.org/10.1134/1.1767571

[4] Medyantseva E.P., Brusnitsyn D.V., Gazizullina E.R., et al. Hybrid nanocomposites as electrode modifiers in amperometric immunosensors for the determination of amitriptyline. J. Anal. Chem., 2020, vol. 75, no. 4, pp. 536--543. DOI: https://doi.org/10.1134/S1061934820040103

[5] Xu G.-R., Shi J.-J., Dong W.-H., et al. One-pot synthesis of a Ni--Mn3O4 nanocomposite for supercapacitors. J. Alloys Compd., 2015, vol. 630, pp. 266--271. DOI: https://doi.org/10.1016/j.jallcom.2015.01.067

[6] Tao R., Zhang F., Nguyen H.G., et al. Temperature-insensitive silicone composites as ballistic witness materials: the impact of water content on the thermophysical properties. J. Mater. Sci., 2021, vol. 56, no. 29, pp. 16362--16375. DOI: https://doi.org/10.1007/s10853-021-06334-x

[7] Li C., Wang Z.-Y., He Z.-J., et al. An advance review of solid-state battery: challenges, progress and prospects. SM&T, 2021, vol. 29, art. e00297. DOI: https://doi.org/10.1016/j.susmat.2021.e00297

[8] Yurasov A.N., Yashin M.M., Gladyshev I.V., et al. Influence of size effects and granule distribution by size on optical and magneto-optical properties of nanocomposites. Russian Technological Journal, 2021, vol. 9, no. 3, pp. 49−57 (in Russ.). DOI: https://doi.org/10.32362/2500-316X-2021-9-3-49-57

[9] Domashevskaya E.P., Ivkov S.A., Sitnikov A.V., et al. Influence of the relative content of the metal component in the dielectric matrix on the formation and size of cobalt nanocrystals in Cox(MgF2)100 − x film composites. Phys. Solid State, 2019, vol. 61, no. 2, pp. 71--79. DOI: https://doi.org/10.1134/S1063783419020112

[10] Kakhramanov N.T., Allahverdiyeva Kh.V., Mustafayeva F.A., et al. Theoretical aspects of the injection molding process of multicomponent nanocomposites based on polyolefins. Известия высших учебных заведений. Сер. "Химия и химическая технология", 2022, т. 65, № 1, с. 83--91. DOI: https://doi.org/10.6060/ivkkt.20226501.6451

[11] Lima E., Tanaka T., Toyoda I. A novel low phase noise push-push oscillator employing dual-feedback sub-oscillators. PIERM, 2018, vol. 75, pp. 141--148. DOI: http://dx.doi.org/10.2528/PIERM18080701

[12] Zhigalov V.S., Bykova L.E., Myagkov V.G., et al. CoPt--Al2O3 nanocomposite films: synthesis, structure, and magnetic properties. J. Surf. Investig., 2020, vol. 14, no. 1, pp. 47--53. DOI: https://doi.org/10.1134/S102745102001022X

[13] Medvedeva N.V., Ipatova O.M., Ivanov Yu.D., et al. Nanobiotechnology and nanomedicine. Biochem. M. Suppl. Ser. B, 2007, vol. 1, no. 2, pp. 114--124. DOI: https://doi.org/10.1134/S1990750807020023

[14] Davydov S.Yu., Kryukov A.Yu., Izvol’skii I.M., et al. Preparation of carbon nanomaterials through CH4 pyrolysis on (Co + Mo)/MgO catalysts with different metal contents. Inorg. Mater., 2013, vol. 49, no. 3, pp. 252--256. DOI: https://doi.org/10.1134/S0020168513020064

[15] Kozlov G.V., Dolbin I.V. Comparing efficiency of carbon nanotubes and graphene as an arming component for nanocomposites. Vestnik mashinostroeniya, 2020, no. 1, pp. 73--75 (in Russ.).

[16] Yashin M.M., Yurasov A.N., Ganshina E.A., et al. Simulation of the spectra of the transverse Kerr effect of magnetic nanocomposites CoFeZr−Al2O3. Herald of the Bauman Moscow State Technical University, Series Natural Sciences, 2019, no. 5 (86), pp. 63--72. DOI: http://dx.doi.org/10.18698/1812-3368-2019-5-63-72