Stationary Fluctuations Distributions of Brownian Particle Velocity in a Medium with Fluctuating Viscous Friction Coefficient

Authors: Morozov A.N. Published: 23.05.2014
Published in issue: #3(54)/2014  

Category: Physics  
Keywords: Brownian motion, velocity fluctuations, Wiener process, Poisson process, distribution function, characteristic function, viscous friction

Brownian motion in the medium with the fluctuating viscous friction coefficient is described. Stationary function of fluctuations distribution of a Brownian particle velocity for a case of Gaussian random variations of a viscous friction coefficient is calculated. It is shown that this function in limiting cases coincides with Cauchy and Maxwell distribution functions. The author deduced the equation for characteristic function of velocity fluctuations of a Brownian particle on exposure to Poisson random process, and also the solution of this equation for a stationary case was found. The distribution function of fluctuations of a Brownian particle velocity and also its first four moments and cumulant were defined at first approximation. Asymmetry and kurtosis of distribution function is calculated. The author established the Kullback’s measure dependence on Poisson process intensity and distribution function kurtosis. It is proposed to define Poisson process intensity by results of long-term measurements of current fluctuations in small volumes of electrolyte.


[1] Klimontovich Yu.L. Statisticheskaya fizika [Statistical physics]. Moscow, Nauka Publ., 1982. 608 p.

[2] Morozov A.N. Neobratimye protsessy i brounovskoe dvizhenie [Irreversible processes and Brownian motion]. Moscow, MGTU im.N.E. Baumana Publ., 1997. 332 p.

[3] Markov Yu.G., Sinitsyn I.N. Single- and multivariate distributions of irregularity fluctuations of the Earth rotation. Dokl. RAN [Proc. Russ. Acad. Sci.], 2009, vol. 428, no. 5, pp. 616-619 (in Russ.).

[4] Bochkov G.N., Kuzovlev Yu.E. The new in 1/f-noise researches. Uspekhifizicheskikh nauk [Physics-Uspekhi], 1983, vol. 141, iss. 1, pp. 151-176 (in Russ.).

[5] Morozov A.N. Theory applications of non-Markovian processes in describing of Brownian motion. Zh. Eksp. Teor. Fiz. [J. Exp. Theor. Phys.], vol. 109, iss. 4. pp. 1304-1315 (in Russ.).

[6] Morozov A.N. The definition method of non-Markovian processes determined by linear integral transformation. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Estestv. Nauki [Herald of the Bauman Moscow State Tech. Univ., Nat. Sci.], 2004, no. 3, pp. 47-56 (in Russ.).

[7] Morozov A.N., Skripkin A.V. Application of integral transformations for Brownian motion definition as non-Markovian random process Izv. Vyssh. Uchebn. Zaved., Fizika. [Proc. Univ., Physics], 2009, vol. 52, no. 2, pp. 66-74 (in Russ.).

[8] Morozov A.N., Skripkin A.V. Spherical particle Brownian motion in viscous medium as non-Markovian random process. Physics Letters A., 2011, vol. 375, no. 46. pp. 4113-4115.

[9] Lisy V., Tothova J., Glod L. On the correlation properties of thermal noise in fluids. Int. J. of Thermophysics, 2013, vol. 34, iss. 4, pp. 629-641.

[10] Malakhov A.N. Kumulyantnyy analiz sluchaynykh negaussovykh protsessov i ikh preobrazovaniy [Cumulant analysis of random non-Gaussian processes and their transformations]. Moscow, Sovetskoe radio Publ., 1978. 370 p.

[11] Pugachev V.S., Sinitsyn I.N. Stokhasticheskie differentsial’nye sistemy [Stochastic differential systems]. Moscow, Nauka Publ., 1990. 632 p.

[12] Stratonovich R.L. Izbrannye voprosy teorii fluktuatsiy v radiotekhnike [Selected problems in the theory of fluctuations in radio engineering]. Moscow, Sovetskoe radio Publ., 1963. 321 c.

[13] Morozov A.N. The definition of diffusion and Brownian motion as Poisson random process. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Estestv. Nauki [Herald of the Bauman Moscow State Tech. Univ., Nat. Sci.], 1999, no. 2, pp. 85-90 (in Russ.).

[14] Bunkin N.F., Morozov A.N. Stokhasticheskie sistemy v fizike i tekhnike. [Stochastic systems in Physics and Engineering]. Moscow, MGTU im. N.E. Baumana Publ., 2011. 366 p.

[15] Prudnikov A.P., Brychkov Yu.A., Marichev O.I. Integraly i ryady [Integrals and Series]. Moscow, Nauka Publ., 1981. 800 p.

[16] Nikiforov A.F., Uvarov V.B. Spetsial’nye funktsii matematicheskoy fiziki. Specific functions of Mathematical Physics Moscow, Nauka Publ., 1984. 344 p.

[17] Morozov A.N. Preliminary results of mensuration of Kullback’s measure of voltage fluctuations on electrolytic cell. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Estestv. Nauki [Herald of the Bauman Moscow State Tech. Univ., Nat. Sci.], 2011, no. 2, pp. 16-24 (in Russ.). М.: Наука, 1967. 408 с.

[18] Kullback S. Information Theory and Statistics. N. Y., Wiley & Sons, 1959. 359 p. (Russ. Ed.: Kul’bak S. Teoriya informatsii i statistika. Moscow, Nauka Publ., 1967. 408 p.).

[19] Zaripov R.G. Novye mery i metody v teorii informatsii. [New measure and technics in Information theory]. Kazan’, Kazan. Gos. Tekh. Unst. Publ., 2005. 364 p.

[20] Kamke E. Differentialgleichungen: Ldosungsmethoden und Loosungen. Akademische Verlagsgesellschaft, Leipzig, 1967. (Russ. ed.: Kamke E. Spravochnik po obyknovennym differentsial’nym uravneniyam. Per. s nem. 4-e izd., ispr. [Handbook on ordinary differential equations]. Moscow, Nauka Publ., 1971. 388 p.)