Variational Formulation of the Mathematical Model of Stationary Heat Conduction with Account for Spatial Nonlocality
Authors: Savelyeva I.Yu. | Published: 27.04.2022 |
Published in issue: #2(101)/2022 | |
DOI: 10.18698/1812-3368-2022-2-68-86 | |
Category: Physics | Chapter: Thermal Physics and Theoretical Heat Engineering | |
Keywords: mathematical model, nonlocality, variational formulation, functional, nonlinearity |
Abstract
In creating and using new structurally sensitive materials, it is essential to construct mathematical models which make it possible to describe the materials’ behavior in widely changing external influences. Modeling of non-local media is a class of methods of generalized continuum mechanics. The capability of analyzing mathematical models of a continuous medium can be extended through variational methods. The paper describes the construction of a functional for the problem of stationary heat conduction in a homogeneous body, taking into account the effects of nonlocality and with a temperature-independent heat conduction coefficient. A variational formulation used in the case of a linear problem in combination with acceptable admissible functions allowed us to quantify this effect. The study gives an example of using the variational formulation, which takes into account the influence of the spatial nonlocality of the stationary heat conduction process on the parameters that determine the well-known phenomenon of thermal explosion with an exponential temperature dependence of the volumetric heat release rate in the plate. The quantitative analysis was carried out for two versions of the function that is admissible for the constructed integral functional and describes the possible temperature distribution over the thickness of the plate under consideration. Having compared the obtained results, we opted for the admissible function, as its use leads to a smaller difference between the maximum value of the parameter characterizing the intensity of heat release in the plate and the known result found with no account for the influence of spatial nonlocality
The work was carried out with the support of the Ministry of Education and Sciences of the Russian Federation (project no. 0705-2020-0047)
Please cite this article in English as:
Savelyeva I.Yu. Variational formulation of the mathematical model of stationary heat conduction with account for spatial nonlocality. Herald of the Bauman Moscow State Technical University, Series Natural Sciences, 2022, no. 2 (101), pp. 68--86 (in Russ.). DOI: https://doi.org/10.18698/1812-3368-2022-2-68-86
References
[1] Jolley K., Gill S. Modelling transient heat conduction in solids at multiple length and time scales: a coupled non-equilibrium molecular dynamics/continuum approach. J. Comput. Phys. Sci., 2009, vol. 228, iss. 19, pp. 7412--7425. DOI: https://doi.org/10.1016/j.jcp.2009.06.035
[2] Cahill D., Ford W., Goodson K., et al. Nanoscale thermal transport. J. Appl. Phys., 2003, vol. 93, iss. 2, art. 793. DOI: https://doi.org/10.1063/1.1524305
[3] Jolley K., Gills S.P. Modeling transient heat conduction at multiple length and time scale: a coupled non-equilibrium molecular dynamics/continuum approach. In: Pyrz R., Rauhe J.C. (eds). IUTAM Symposium on Modelling Nanomaterials and Nanosystems. IUTAM Bookseries, vol. 13. Dordrecht, Springer, 2009, pp. 27--36. DOI: https://doi.org/10.1007/978-1-4020-9557-3_4
[4] Onami M., Ivasimidzu S., Genka K., et al. Vvedenie v mikromekhaniku [Introduction into micromechanics]. Moscow, Metallurgiya Publ., 1987.
[5] Eringen A.C. Nonlocal continuum field theories. New York, NY, Springer, 2002. DOI: https://doi.org/10.1007/b97697
[6] Kuvyrkin G.N., Savelieva I.Yu. Thermomechanical model of nonlocal deformation of a solid. Mech. Solids, 2016, vol. 51, no. 3, pp. 256--262. DOI: https://doi.org/10.3103/S002565441603002X
[7] Kuvyrkin G., Savelyeva I., Kuvshinnikova D. Temperature distribution in a composite rod, taking into account nonlocal spatial effects. E3S Web Conf., 2019, vol. 128, art. 09006. DOI: https://doi.org/10.1051/e3sconf/201912809006
[8] Kuvyrkin G.N., Savelyeva I.Yu., Kuvshinnikova D.A. Nonlocal dynamic temperature stress simulation. J. Phys.: Conf. Ser., 2021, vol. 1902, art. 012015. DOI: https://doi.org/10.1088/1742-6596/1902/1/012015
[9] Zarubin V.S., Kuvyrkin G.N., Savel’eva I.Yu. Mathematical model of a nonlocal medium with internal state parameters. J. Eng. Phys. Thermophy., 2013, vol. 86, no. 4, pp. 820--826. DOI: https://doi.org/10.1007/s10891-013-0900-5
[10] Zarubin V.S. Inzhenernye metody resheniya zadach teploprovodnosti [Engineering methods for solving heat transfer problems]. Moscow, Energoatomizdat Publ., 1983.
[11] Zarubin V.S., Kuvyrkin G.N., Savelyeva I.Yu. Variational estimates of the parameters of a thermal explosion of a stationary medium in an arbitrary domain. Int. J. Heat Mass Transf., 2019, vol. 135, pp. 614--619. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2019.02.009
[12] Kuvyrkin G.N., Savelyeva I.Yu., Zarubin V.S. Dual variational model of a thermal breakdown of a dielectric layer at an alternating voltage. Z. Angew. Math. Phys., 2019, vol. 70, no. 4, art. 115. DOI: https://doi.org/10.1007/s00033-019-1153-8
[13] Zarubin V.S., Kuvyrkin G.N., Savel’eva I.Yu. The variational form of the mathematical model of a thermal explosion in a solid body with temperature-dependent thermal conductivity. High Temp., 2018, vol. 56, no. 2, pp. 223--228. DOI: https://doi.org/10.1134/S0018151X18010212
[14] Vlasova E.A., Zarubin V.S., Kuvyrkin G.N. Priblizhennye metody matematicheskoy fiziki [Approximate methods of mathematical physics]. Moscow, BMSTU Publ., 2004.
[15] Frank-Kamenetskiy D.A. Diffuziya i teploperedacha v khimicheskoy kinetike [Diffusion and heat transfer in chemical kinetics]. Moscow, Nauka Publ., 1987.
[16] Глаголев К.В., Морозов А.Н. Физическая термодинамика. М., Изд-во МГТУ им. Н.Э. Баумана, 2007.
[17] Zeldovich Ya.B., Barenblatt G.I., Librovich V.B., et al. Matematicheskaya teoriya goreniya i vzryva [Mathematical theory of combustion and explosion]. Moscow, Nauka, Publ., 1980.
[18] Zarubin V.S., Kuvyrkin G.N., Savelyeva I.Yu. Mathematical model of thermal explosion, the dual variational formulation of nonlinear problem, alternative functional. Matematika i matematicheskoe modelirovanie [Mathematics and Mathematical Modeling], 2016, no. 5, pp. 29--45 (in Russ.). DOI: https://doi.org/10.7463/mathm.0516.0847523
[19] Parks J.R. Criticality criteria for various configurations of a self-heating chemical as functions of activation energy and temperature of assembly. J. Chem. Phys., 1961, vol. 34, iss. 1, pp. 46--50. DOI: https://doi.org/10.1063/1.1731612
[20] Banichuk N.V., Petrov V.M., Chernous’ko F.L. The solution of variational and boundary value problems by the method of local variations. USSR Comput. Math. Math. Phys., 1966, vol. 6, iss. 6, pp. 1--21. DOI: https://doi.org/10.1016/0041-5553(66)90158-3