Influence of a Scattering Medium Consisting of Potassium Atoms on the Luminescent Signal Decay Time: Theoretical Investigation by Monte Carlo Method

Authors: Yamshchikov V.M. Published: 23.06.2022
Published in issue: #3(102)/2022  
DOI: 10.18698/1812-3368-2022-3-69-85

Category: Physics | Chapter: Theoretical Physics  
Keywords: Monte Carlo method, scattering, luminescence, lifetime, complete frequency redistribution


The study solves the problem of the luminescent photons propagation in a resonantly absorbing medium consisting of atoms of the studied substance and a buffer inert gas. The Monte Carlo method was used in numerical experiments carried out to simulate real processes that occur in a chamber designed to determine the lifetime of an individual atom in an excited state by the method of measuring the luminescence intensity decay time. Findings of the research show that when luminescent photons are repeatedly scattered (scattering means the process of absorption and re-emission of a photon by an atom) in a medium, the luminescence decay time noticeably increases, reaching a value greater than the average lifetime of an individual atom in an excited state. The reflection of photons from the walls that make up the chamber can lead to errors in measuring the lifetime. The process of luminescence decay is studied theoretically for various detunings of the laser frequency from the resonant transition frequency. A three-level model of the atom and a model of complete frequency redistribution were applied. The study describes an algorithm based on the Monte Carlo method, which is used to model the three-level population kinetics, laser radiation transfer, radiation trapping, and frequency redistribution

Please cite this article in English as:
Yamshchikov V.M. Influence of a scattering medium consisting of potassium atoms on the luminescent signal decay time: theoretical investigation by Monte Carlo method. Herald of the Bauman Moscow State Technical University, Series Natural Sciences, 2022, no. 3 (102), pp. 69--85 (in Russ.). DOI: https://doi.org/10.18698/1812-3368-2022-3-69-85


[1] Frish S.E. Opticheskie spektry atomov [Optical spectrum of atoms]. Moscow, FIZMATGIZ Publ., 1963.

[2] Sautenkov V.A., Arshinova I.D., Bobrov A.A., et al. Radiation transfer in high density atomic vapours with various detunings of probe laser from resonance transition. Mezhdunarodnyy nauchno-issledovatel’skiy zhurnal [International Research Journal], 2020, no. 4-1, pp. 6--10 (in Russ.). DOI: https://doi.org/10.23670/irj.2020.94.4.pre-print

[3] Huennekens J., Park H.J., Colbert T., et al. Radiation trapping in sodium-noble-gas mixtures. Phys. Rev. A, 1987, vol. 35, iss. 7, pp. 2829--2901. DOI: https://doi.org/10.1103/PhysRevA.35.2892

[4] Huennekens J., Gallagher A. Radiation diffusion and saturation in optical thick Na vapor. Phys. Rev. A, 1983, vol. 28, iss. 1, pp. 238--247. DOI: https://doi.org/10.1103/PhysRevA.28.238

[5] Kosarev N.I. Decay of the excited state 32P3/2 of sodium atoms taking into account radiation trapping. Opt. Spectrosc., 2008, vol. 104, no. 1, pp. 1--3. DOI: https://doi.org/10.1134/S0030400X08010013

[6] Yamshchikov V.M., Rogachev V.G., Kudryashov E.A., et al. Transfer and trapping of resonance radiation in a two-level system. Opt. Spectrosc., 2020, vol. 128, no. 8, pp. 1182--1186. DOI: https://doi.org/10.1134/S0030400X20080391

[7] Bulyshev A.E., Preobrazhenskiy N.G., Suvovrov A.E. Radiation transport in spectral lines. Sov. Phys. Usp., 1988, vol. 31, no. 9, pp. 865--878. DOI: https://doi.org/10.1070/PU1988v031n09ABEH005625

[8] Holstein T. Imprisonment of resonance radiation in gases. Phys. Rev., 1947, vol. 72, iss. 12, pp. 1212--1232. DOI: https://doi.org/10.1103/PhysRev.72.1212

[9] Biberman L.M. To the theory of resonance emission diffusion. ZhETF, 1947, vol. 17, no. 4, pp. 416--426 (in Russ.).

[10] Kosarev N.I. Radiatsionnye rezonansnye protsessy v opticheski plotnykh sredakh. Dis. d-ra fiz.-mat. nauk [Radiation resonance processes in optically-dense medium. Dr. Phys.-Math. Sc. Diss.]. Krasnoyarsk, IP SB RAS Publ., 2010 (in Russ.).

[11] Araslanova M.N., Kosarev N.I., El’berg M.S. Doppler frequency redistribution upon coherent photon emission by atoms in an optically dense medium. Opt. Spectrosc., 2018, vol. 125, no. 5, pp. 601--608. DOI: https://doi.org/10.1134/S0030400X18110036

[12] Labeyrie G., Kaiser R., Delande D. Radiation trapping in a cold atomic gas. Appl. Phys. B, 2005, vol. 81, no. 7, pp. 1001--1008. DOI: https://doi.org/10.1007/s00340-005-2015-y

[13] Baeva M., Reiter D. Monte Carlo simulation of radiation trapping in Hg--Ar fluorescent discharge lamps. Plasma Chem. Plasma Process., 2003, vol. 23, no. 2, pp. 371--387. DOI: https://doi.org/10.1023/A:1022928320970

[14] Jacques S.L., Wang L. Monte Carlo modeling of light transport in tissues. In: Welch A.J., van Gemert M.J.C. (eds). Optical-Thermal Response of Laser-Irradiated Tissue. Lasers, Photonics, and Electro-Optics. Springer, Boston, MA, Springer, 1995, pp. 73--100. DOI: https://doi.org/10.1007/978-1-4757-6092-7_4

[15] Bogachev A.V., Garanin S.G., Dudov A.M., et al. Diode-pumped cesium vapor laser with closed-cycle laser-active medium circulation. Quantum Electron., 2012, vol. 42, no. 2, pp. 95--98. DOI: https://doi.org/10.1070/QE2012v042n02ABEH014734

[16] Wallerstein A.J. Kinetics of higher lying potassium states after excitation of the D2 transition in the presence of helium. PhD Thesis. AFIT, 2018.

[17] Kraynov V.P., Smirnov B.M. Kvantovaya teoriya izlucheniya atomnykh chastits [Quantum theory of atomic particles emission]. Dolgoprudnyy, Intellekt Publ., 2015.

[18] Gao F., Chen F., Xie J., et al. Comparative study of diode-pumped hydrocarbon free Rb and K vapor lasers. Opt. Laser Technol., 2014, vol. 58, pp. 166--171. DOI: https://doi.org/10.1016/j.optlastec.2013.11.016

[19] Daniel A. Steck Potassium D Line Data. Available at: https://steck.us/alkalidata (accessed: 01.05.2022).

[20] Nagirner D.I. Lektsii po teorii perenosa izlucheniya [Lectures on theory of radiative transfer]. St. Petersburg, SPbU Publ., 2001.

[21] Zel’dovich Ya.B., Myshkis A.D. Elementy prikladnoy matematiki [Elements of applied mathematics]. Moscow, Lenand Publ., 2018.