Использование модели оптимизации управления продажами на машиностроительном предприятии в условиях кризиса - page 6

Следовательно, частные издержки по отдельным трансакциям (
y
i
)
будут равны
y
i
=
З
т
z
i
(
i
= 1
, n
)
.
Таким образом, при найденных значениях игры (вероятности рас-
пределения средств на
i
-й заказ)
z
i
(
i
= 1
, n
)
, задавая допустимые
значения коэффициента эффективности трансакций (издержек), мож-
но найти соответствующие им значения трансакционных издержек и
их распределение по трансакциям. И наоборот, по заданным трансак-
ционным издержкам можно найти их распределение по трансакциям
и коэффициент эффективности издержек.
Разработанный игровой подход к оценке трансакционных издер-
жек может быть проиллюстрирован на примере машиностроительного
предприятия по следующим исходным данным (таблица).
Таблица
План продаж машиностроительного предприятия с учетом выручки и
производственных издержек
Номер заказа
Плановые показатели
Выручка
B
i
, тыс. руб Производственные издержки, тыс. руб
1
2000
1800
2
1600
1400
3
2400
2000
4
1000
900
Машиностроительное предприятие имеет 4 заказа и ожидает вы-
ручку в каждый период времени, при этом производственные издерж-
ки составляют фиксированное значение на каждый заказ. Менеджер,
зная данные параметры, может с помощью информационной системы
мгновенное задавать значение прибыльности, эффективности и тран-
закционных издержек предприятия.
Для расчета используем матрицы для рассматриваемой ситуации:
B
=
⎜⎜⎝
2000 0 0 0
0 1600 0 0
0 0 2400 0
0 0 0 1000
⎟⎟⎠
;
С
=
⎜⎜⎝
1800 +
y
1
0
0
0
0
1400 +
y
2
0
0
0
0
2000 +
y
3
0
0
0
0
900 +
y
4
⎟⎟⎠
.
Для минимизации производственных и трансакционных издержек
рассчитаем следующие результаты биматричной игры:
ISSN 1812-3368. Вестник МГТУ им. Н.Э. Баумана. Сер. “Естественные науки”. 2010. № 1
105
1,2,3,4,5 7,8
Powered by FlippingBook