[6] Smirnov A.D. Calculation of Spectroscopic Constants and Radiative Parameters
for A
1
Σ
+
u
–X
1
Σ
+
g
and
B
1
Π
u
–X
1
Σ
+
g
Electronic Transitions of Lithium Dimer.
Opt.
Spektrosk.
[Opt. Spectrosc.], 2012, vol. 113, no. 4, pp. 387–394 (in Russ.).
[7] Smirnov A.D. Calculation of Radiative Parameters for A
1
Σ
+
u
–X
1
Σ
+
g
and
B
1
Π
u
–
X
1
Σ
+
g
Electronic Transitions of Potassium Dimer.
Vestn. Mosk. Gos. Tekh. Univ.
im. N.E. Baumana, Estestv. Nauki
[Herald of the Bauman Moscow State Tech. Univ.,
Nat. Sci.], 2013, no. 2 (49), pp. 67–85 (in Russ.).
[8] Smirnov A.D. Energy and Radiative Properties of the
B
1
Π
u
–X
1
Σ
+
g
Electronic Transition of the Cesium and Rubidium dimers.
Jelektr.
nauchno-tehn. Izd. “Inzhenernyy zhurnal: nauka i innovacii”
[El. Sc.-
Techn. Publ. “Eng. J.: Science and Innovation”, 2013, iss. 6. URL:
http://engjournal.ru/catalog/fundamentals/physics/790.html(accessed 10.11.2014).
[9] Smirnov A.D. Calculation of Spectroscopic Constants and Radiative Parameters
for
B
1
Π
–X
1
Σ
+
Electronic Transition of the Molecules NaK, NaRb, NaCs.
Opt.
Spektrosk.
[Opt. Spectrosc.], 2014, vol. 117, no. 3, pp. 373–380 (in Russ.).
[10] Bernheim R.A., Gold L.P., Tipton T. Rydberg states of
7
Li
2
by pulsed optical-optical
double resonance spectroscopy.
J. Chem. Phys
., 1983, vol. 78, pp. 3635–3647.
[11] Martin S., Chevaliere J., Valignat S., Perrot J.P., Broyer M. Autoionizing rydberg
states of the Na
2
molecule.
Chem. Phys. Lett
., 1982, vol. 87, pp. 235–239.
[12] Leutwyler S., Herrmann A., Woste L., Schumacher E. Isotope selective two-step
photoionization study of K
2
in a supersonic molecular beam.
Chem. Phys
., 1983,
vol. 48, pp. 253–267.
[13] Bouzouita H., Ghanmi C., Berriche H. Ab initio study of the alkali-dimer cation Li
+
2
.
J. Molecul. Structure
, 2006, vol. 777, pp. 75–80.
[14] Kirby-Docken K., Cerjan C.J., Dalgarno A. Oscillator strengths and photodissociation
cross sections for Li
+
2
and Na
+
2
.
Chem. Phys. Lett
., 1976, vol. 40, pp. 205–209.
[15] Llyabaev E., Kaldor U. Ground and excited states of K
2
and K
+
2
by the open-shell
coupled cluster method.
J. Chem. Phys
., 1993, vol. 98, pp. 7126–7131.
[16] Jasik P., Wilczynski J., Sienkiewicz J.E. Calculatoin of adiabatic potentials of Li
+
2
.
Eur. Phys J
.
Special Topics
, 2007, vol. 144, pp. 85–91.
[17] Berriche H. Potential energy and dipole moment of the Na
+
2
ionic molecule.
Int. J.
Quant. Chemistry
, 2013, vol. 113, pp. 2405–2412.
[18] Magnier S., Aubert-Frecon M. Theoretical determination of the K
+
2
electronic
structure.
J. Quant. Spectr. Radiat. Transfer
, 2003, vol. 78, pp. 217–225.
[19] Jraij A., Alouche A. R., Magnier S., Aubert-Frecon M. Theoretical spin-orbit structure
on the alkali dimer cation K
+
2
.
Can. J. Phys
., 2008, vol. 86, pp. 1409–1415.
[20] Herzberg G. Molecular Spectra and Molecular Structure: Spectra of Diatomic
Molecules. Princeton; D. Van Nostrand Co., 1950.
[21] Zulicke L. Quantenchemie. Ein Lehrgang. Band 1. Grundlagen und allgemeine
Methoden. Berlin, VEB Deutscher Verlag der Wissenschaften, 1973.
[22] Kratzer A. Die ultraroten rotationsspektren der halogenwasserstoffe.
Z. Phys
. 1920,
vol. 3, pp. 289–296.
[23] Kemble E.C., Birge R.T., Colby W.F. et al. Molecular Spectra in Gases. National
Research Council, Washington, D.C., 1930, p. 57.
[24] Laher R.R., Khakoo M.A., Antic-Jovanovic A. Radiative transition parameters for
the A
1
Σ
+
u
–X
1
Σ
+
g
band system of
107
,
109
Ag
2
.
J. Mol. Spectr
., 2008, vol. 248,
pp. 111–121.
Статья поступила в редакцию 09.02.2015
ISSN 1812-3368. Вестник МГТУ им. Н.Э. Баумана. Сер. “Естественные науки”. 2015. № 4
55