Previous Page  12 / 13 Next Page
Information
Show Menu
Previous Page 12 / 13 Next Page
Page Background

С.Т. Суржиков

44

ISSN 1812-3368. Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки. 2016. № 5

[2] NASA’s exploration systems architecture. Final Report.

NASA-TM-2005-214062

. Novem-

ber 2005. 758 p.

[3] Olynick D.R., Chen Y.K., Tauber M.E. Aerodynamics of the Stardust sample return cap-

sule.

J. Spacecraft and Rockets

, 1999, vol. 36, no. 3, pp. 442–462.

[4] Olynick D.R., Henline W.D., Hartung L.C., Candler G.V. Comparison of coupled radiative

Navier — Stokes flow solutions with the project Fire-II flight data.

AIAA 94-1955

, 1994. 15 p.

[5] Lee D.B., Goodrich W.D

.

The aerodynamic environment of the Apollo command module

during superorbital entry.

NASA TN D-6792

. April 1972. 80 p.

[6] Surzhikov S.T. Radiative gas dynamics of the Fire-II superorbital space vehicle.

Technical

Physics

, 2016, vol. 61, iss. 3, pp. 349–359. DOI: 10.1134/S1063784216030208

[7] Surzhikov S.T. Radiation aerothermodynamics of the Stardust space vehicle.

J. Appl. Math.

Mech.

, 2016, vol. 80, iss. 1.

[8] Surzhikov S.T. Radiative gasdynamics of re-entry space vehicle of large size with superor-

bital velocity.

AIAA paper 2015-0980

, 2015. 32 p.

[9] Surzhikov S.T

.

Radiative gas dynamics of large superorbital space vehicle at angle of attack.

AIAA 2016-0741

, 2016. 20 p.

[10] Surzhikov S.T. Coupled radiative gasdynamic interaction and non-equilibrium dissocia-

tion for large-scale returned space vehicles.

J. Chem. Phys

., 2012, vol. 398, pp. 56–63.

[11] Surzhikov S.T. Two-dimensional numerical analysis of flow ionization in the RAM-C-II

flight experiment.

Russ. J. Phys. Chem. B

, 2015, vol. 9, iss. 1, pp. 69–86.

DOI: 10.1134/S1990793115010200

[12] Surzhikov S.T. The role of atomic lines in radiation heating of the experimental space

vehicle Fire-II.

Doklady Physics

, 2015, vol. 60, no. 10, pp. 465–470.

DOI: 10.1134/S1028335815100110

[13] Surzhikov S.T. Aerodynamics of the re-entry spacecraft Stardust within the hypersonic

flight.

Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Mashinostr.

[Herald of the Bauman

Moscow State Tech. Univ., Mech. Eng.], 2016, no. 3, pp. 4–22 (in Russ.).

DOI: 10.18698/0236-3941-2016-3-4-22

[14] Shang J., Kimmel R.L., Menart J., Surzhikov S.T. Hypersonic flow control using surface

plasma actuator.

J. of Propulsion and Power

, 2008, vol. 24, no. 5, pp. 923–934.

[15] Shang J.S., Surzhikov S.T., Kimmel R., Gaitonde D., Menart J., Hayes J. Mechanisms

of plasma actuators for hypersonic flow control.

Progress in Aerospace Sciences

, 2005, vol. 41,

pp. 642–668.

[16] Surzhikov S.T. Analytical methods of building finite-difference mesh for computation

of aerothermodynamics of descending spacecrafts.

Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Bau-

mana, Mashinostr.

[Herald of the Bauman Moscow State Tech. Univ., Mech. Eng.], 2004,

no. 2, pp. 24–50 (in Russ.).

[17] Surzhikov S.T. Radiatsionnaya gazovaya dinamika spuskaemykh kosmicheskikh appa-

ratov. Mnogotemperaturnye modeli [Radiation gas dynamics of descent capsule. Multitem-

perature models]. Moscow, IPMekh RAN Publ., 2013. 706 p.

[18] Millikan R., White D. Systematics of vibrational relaxation.

J. of Chem. Phys

., 1963,

vol. 39, no. 12, pp. 3209–3212.