С.Т. Суржиков
44
ISSN 1812-3368. Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки. 2016. № 5
[2] NASA’s exploration systems architecture. Final Report.
NASA-TM-2005-214062
. Novem-
ber 2005. 758 p.
[3] Olynick D.R., Chen Y.K., Tauber M.E. Aerodynamics of the Stardust sample return cap-
sule.
J. Spacecraft and Rockets
, 1999, vol. 36, no. 3, pp. 442–462.
[4] Olynick D.R., Henline W.D., Hartung L.C., Candler G.V. Comparison of coupled radiative
Navier — Stokes flow solutions with the project Fire-II flight data.
AIAA 94-1955
, 1994. 15 p.
[5] Lee D.B., Goodrich W.D
.
The aerodynamic environment of the Apollo command module
during superorbital entry.
NASA TN D-6792
. April 1972. 80 p.
[6] Surzhikov S.T. Radiative gas dynamics of the Fire-II superorbital space vehicle.
Technical
Physics
, 2016, vol. 61, iss. 3, pp. 349–359. DOI: 10.1134/S1063784216030208
[7] Surzhikov S.T. Radiation aerothermodynamics of the Stardust space vehicle.
J. Appl. Math.
Mech.
, 2016, vol. 80, iss. 1.
[8] Surzhikov S.T. Radiative gasdynamics of re-entry space vehicle of large size with superor-
bital velocity.
AIAA paper 2015-0980
, 2015. 32 p.
[9] Surzhikov S.T
.
Radiative gas dynamics of large superorbital space vehicle at angle of attack.
AIAA 2016-0741
, 2016. 20 p.
[10] Surzhikov S.T. Coupled radiative gasdynamic interaction and non-equilibrium dissocia-
tion for large-scale returned space vehicles.
J. Chem. Phys
., 2012, vol. 398, pp. 56–63.
[11] Surzhikov S.T. Two-dimensional numerical analysis of flow ionization in the RAM-C-II
flight experiment.
Russ. J. Phys. Chem. B
, 2015, vol. 9, iss. 1, pp. 69–86.
DOI: 10.1134/S1990793115010200
[12] Surzhikov S.T. The role of atomic lines in radiation heating of the experimental space
vehicle Fire-II.
Doklady Physics
, 2015, vol. 60, no. 10, pp. 465–470.
DOI: 10.1134/S1028335815100110
[13] Surzhikov S.T. Aerodynamics of the re-entry spacecraft Stardust within the hypersonic
flight.
Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Mashinostr.
[Herald of the Bauman
Moscow State Tech. Univ., Mech. Eng.], 2016, no. 3, pp. 4–22 (in Russ.).
DOI: 10.18698/0236-3941-2016-3-4-22
[14] Shang J., Kimmel R.L., Menart J., Surzhikov S.T. Hypersonic flow control using surface
plasma actuator.
J. of Propulsion and Power
, 2008, vol. 24, no. 5, pp. 923–934.
[15] Shang J.S., Surzhikov S.T., Kimmel R., Gaitonde D., Menart J., Hayes J. Mechanisms
of plasma actuators for hypersonic flow control.
Progress in Aerospace Sciences
, 2005, vol. 41,
pp. 642–668.
[16] Surzhikov S.T. Analytical methods of building finite-difference mesh for computation
of aerothermodynamics of descending spacecrafts.
Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Bau-
mana, Mashinostr.
[Herald of the Bauman Moscow State Tech. Univ., Mech. Eng.], 2004,
no. 2, pp. 24–50 (in Russ.).
[17] Surzhikov S.T. Radiatsionnaya gazovaya dinamika spuskaemykh kosmicheskikh appa-
ratov. Mnogotemperaturnye modeli [Radiation gas dynamics of descent capsule. Multitem-
perature models]. Moscow, IPMekh RAN Publ., 2013. 706 p.
[18] Millikan R., White D. Systematics of vibrational relaxation.
J. of Chem. Phys
., 1963,
vol. 39, no. 12, pp. 3209–3212.