Previous Page  17 / 18 Next Page
Information
Show Menu
Previous Page 17 / 18 Next Page
Page Background

В.И. Васильев, М.В. Васильева, И.К. Сирдитов

158

ISSN 1812-3368. Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки. 2017. № 1

we include the comparison of two-dimensional and three-

dimensional models of heat transfer calculation in a soil,

taking into account the installation of piles and the

seasonal fluctuations of ambient temperature. We present

the results of numerical simulation of soil temperature on

the example of engineering solutions containing several

piles installed in the soil with a layered structure. We

discuss the elements of the developed applied software for

the predicting the temperature regime of soils on

permafrost. Numerical simulations of the problem in

three-dimensional case on the computational cluster of

NEFU “Arian Kuzmin” are provided

REFERENCES

[1] Samarskii A.A., Vabishchevich P.N. Computational heat transfer. Vol. 1. Mathematical

Modelling. Wiley, 1995. 418 p.

[2] Vasilyev V.I., Maksimov A.M., Petrov E.E., Tsypkin G.G. Teplomassoperenos v

promerzayushchikh i protaivayushchikh gruntakh [Heat

and mass transfer in freezing and

melting

soils]. Moscow, Nauka Publ., 1996. 224 p.

[3] Vasilyev V.I., Popov V.V. Numerical solution of the soil freezing problem.

Math. Models

Comput. Simul.

, 2009, vol. 1, iss. 4, pp. 419–427. DOI: 10.1134/S20

70048209040012

[4] Pavlov A.V. Teplofizika landshaftov [Thermophysics

of

landscapes]. Novosibirsk, Nauka

Publ., 1979. 284 p.

[5] Samarskii A.A. The theory of difference schemes. N.Y.–Basel, Marcel Dekker, Inc., 2001.

761 p.

[6] Vasilyeva M.V., Pavlova N.V. Finite element implementation of the task of filtering

grounds freezing.

Matematicheskie zametki JaGU

[Math. Notes of Yakutsk State Univ.], 2013,

vol. 20, no. 1, pp. 195–205 (in Russ.).

[7] Logg Anders, Mardal Kent-Andre, Wells Garth N. Automated solution of differential

equations by the finite element method. The FEniCS Book, 2011. 732 p.

[8] Krylov D.A., Sidnyaev N.I., Fedotov A.A. Mathematical modelling of temperature

distribution.

Matem. Mod.

, 2013, vol. 25, no. 7, pp. 3–27 (in Russ.).

[9] Gornov V.F., Stepanov S.P., Vasilyeva M.V., Vasilyev V.I. Mathematical modeling of heat

transfer problems in the permafrost.

AIP Conference Proceedings

, 2014, vol. 1629, pp. 424–431.

[10] Vabishhevich P.N., Vasilyeva M.V., Pavlova N.V. Numerical simulation of thermal stabi-

lization of filter soils.

Math. Models Comput. Simul.

, 2015, vol. 7, iss. 2, pp. 154–164.

DOI: 10.1134/S20

70048215020106

[11] Vabishchevich P.N., Vasilyeva M.V., Gornov V.F., Pavlova N.V. Mathematical modeling

of the artificial freezing of soils.

Vychislitel'nye tekhnologii

[Computational Technologies],

2014, vol. 19, no. 4, pp. 19–31 (in Russ.).

[12] Vabishchevich P.N., Varlamov S.P., Vasilyev V.I., Vasilyeva M.V., Stepanov S.P. Mathe-

matical modeling of the thermal regime of a railway line in conditions of cryolithozone.

Vestnik SVFU

[Vestnik of North-Eastern Federal Univ.], 2013, vol. 10, no. 5, pp. 5–11

(in Russ.).