Previous Page  13 / 16 Next Page
Information
Show Menu
Previous Page 13 / 16 Next Page
Page Background

Modification of the LS-STAG Immersed Boundary Method for Simulating Turbulent Flows

ISSN 1812-3368. Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки. 2017. № 5

31

End of Table 4

Turbulence model

Number

of cells

Re 1000

=

Re 3900

=

D

C

St

D

C

St

Smag., LES,

C

S

= 0.1 [17], ANSYS

388 550

1.15 0.21

1.07

Smag., LES,

 

max

= ,

= 0.2,

S

C

present study

71 040

1.35 0.24

1.11

0.26

Smag., LES,

 

max

= ,

= 0.5,

S

C

present study

71 040

1.37 0.25

1.10

0.25

S-A, RANS, present study

71 040

1.37 0.25

1.13

0.25

S-A, DES,

= 0.7,

S

C

present study

71 040

1.37 0.25

1.11

0.25

 

,

k

RANS, present study

71 040

1.36 0.25

1.23

0.28

 

,

k

LES,

 

max

= ,

= 0.9,

S

C

present

study

71 040

1.37 0.25

1.11

0.25

 

,

k

RANS, present study

71 040

1.32 0.24

1.18

0.24

 

,

k

DES,

=1.0,

S

C

present study

71 040

1.32 0.25

1.00

0,25

k

 

SST, RANS, present study

71 040

1.34 0.25

1.14

0.25

Fig. 5.

Computed unsteady load

( )

D

C t

and

( )

L

C t

(RANS,

 

k

model, mesh

240 296):

a —

Re =1000

;

b —

Re = 3900

Fig. 6.

Comparison of the drag coefficient computed values with experimental [18]

and computational data on meshes M1–M5 [19] and [20]:

— Wieselsberger [18]; — Henderson, 2D calculations [20]; — mesh M1; + — mesh

M2; ☐ — mesh M3; × — mesh M4 with Smagorinsky model; Δ — mesh M4;

*

— mesh M5; —

LS-STAG (

k

, RANS, 240×296);

— LS-STAG (480×592)