Previous Page  19 / 21 Next Page
Information
Show Menu
Previous Page 19 / 21 Next Page
Page Background

О.В. Щерица, А.О. Гусев, О.С. Мажорова

136

ISSN 1812-3368. Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки. 2017. № 5

Abstract

Keywords

The paper presents a self-consistent model of multicompo-

nent alloy crystallization in a cylindrical ampule. The

mathematical model accounts for the heat and matter

transfer in both solid and liquid phases. We described the

system by the interface position and radially average tem-

perature and concentrations. Special efforts are required to

solve a corresponding one dimensional phase transition

problem in multicomponent alloy. To handle evolution of

solid/liquid interface, the moving boundary problem is

mapped to a new coordinate system. We obtained a con-

servative and implicit finite difference scheme in a new

coordinate system with control volume technique and

constructed a fully implicit coupled approach. Further-

more, we solved a corresponding set of nonlinear equations

by Newton method for the unknown vector, whose com-

ponents are concentrations of all species, interface rate and

temperature. The proposed method was used for numerical

simulation of the crystallization process of А

В

С solution

Stefan problem, phase transition,

mathematical simulation

Received 24.10.2016

© BMSTU, 2017

REFERENCES

[1]

Samarskii A.A., Vabishchevich P.N. Vychislitel'naya teploperedacha [Computational heat

transfer]. Moscow, URSS Publ., 2003. 784 p.

[2]

Samarskii A.A., Vabishchevich P.N., Iliev O.P., Churbanov A.G. Numerical simulation of

convection/diffusion phase change problems — a review.

Journal of Heat Mass Transfer

, 1993,

vol. 36, no. 17, pp. 4095–4106.

[3] Muray W.D., Landis F. Numerical and machine solutions of the transient heat conduction

problems involving melting or freezing.

Journal of Heat Transfer

, 1959, vol. 81, pp. 106–112.

[4] Vermolen F.J., Vuik C. A mathematical model for the dissolution of particles in multicom-

ponent alloys.

J. of Computational and Applied Math

., 2000, vol. 126, no. 1-2, pp. 233–254.

DOI: 10.1016/S0377-0427(99)00355-6

Available at:

http://www.sciencedirect.com/science/article/pii/S0377042799003556

[5] Mazhorova O.S., Popov Yu.P., Shcheritsa O.V. An algorithm for solving a phase transition

problem in a multicomponent system.

Differential Equations

, 2004, vol. 40, no. 7, pp. 1051–

1059. DOI: 10.1023/B

:DIEQ.0000047035.96793.be

Available at:

https://link.springer.com/article/10.1023/B%3ADIEQ.0000047035.96793.be

[6] Mazhorova O.S., Popov Yu.P., Shcheritsa O.V. Conservative scheme for the thermodiffu-

sion Stefan problem.

Differential Equations

, 2013, vol. 49, no. 7, pp. 869–882.

DOI: 10.1134/S0012266113070094

Available at:

https://link.springer.com/article/10.1134/S0012266113070094

[7]

Illingworth T.C., Golosnoy I.O. Numerical solutions of diffusion-controled moving

boundary problems which conserve solute.

Journal of Computation Physics

, 2005, vol. 209,

no. 1, pp. 207–225. DOI: 10.1016/j.jcp.2005.02.031

Available at:

http://www.sciencedirect.com/science/article/pii/S0021999105000859