О.В. Щерица, А.О. Гусев, О.С. Мажорова
136
ISSN 1812-3368. Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки. 2017. № 5
Abstract
Keywords
The paper presents a self-consistent model of multicompo-
nent alloy crystallization in a cylindrical ampule. The
mathematical model accounts for the heat and matter
transfer in both solid and liquid phases. We described the
system by the interface position and radially average tem-
perature and concentrations. Special efforts are required to
solve a corresponding one dimensional phase transition
problem in multicomponent alloy. To handle evolution of
solid/liquid interface, the moving boundary problem is
mapped to a new coordinate system. We obtained a con-
servative and implicit finite difference scheme in a new
coordinate system with control volume technique and
constructed a fully implicit coupled approach. Further-
more, we solved a corresponding set of nonlinear equations
by Newton method for the unknown vector, whose com-
ponents are concentrations of all species, interface rate and
temperature. The proposed method was used for numerical
simulation of the crystallization process of А
–
В
–
С solution
Stefan problem, phase transition,
mathematical simulation
Received 24.10.2016
© BMSTU, 2017
REFERENCES
[1]
Samarskii A.A., Vabishchevich P.N. Vychislitel'naya teploperedacha [Computational heat
transfer]. Moscow, URSS Publ., 2003. 784 p.
[2]
Samarskii A.A., Vabishchevich P.N., Iliev O.P., Churbanov A.G. Numerical simulation of
convection/diffusion phase change problems — a review.
Journal of Heat Mass Transfer
, 1993,
vol. 36, no. 17, pp. 4095–4106.
[3] Muray W.D., Landis F. Numerical and machine solutions of the transient heat conduction
problems involving melting or freezing.
Journal of Heat Transfer
, 1959, vol. 81, pp. 106–112.
[4] Vermolen F.J., Vuik C. A mathematical model for the dissolution of particles in multicom-
ponent alloys.
J. of Computational and Applied Math
., 2000, vol. 126, no. 1-2, pp. 233–254.
DOI: 10.1016/S0377-0427(99)00355-6
Available at:
http://www.sciencedirect.com/science/article/pii/S0377042799003556[5] Mazhorova O.S., Popov Yu.P., Shcheritsa O.V. An algorithm for solving a phase transition
problem in a multicomponent system.
Differential Equations
, 2004, vol. 40, no. 7, pp. 1051–
1059. DOI: 10.1023/B
:DIEQ.0000047035.96793.beAvailable at:
https://link.springer.com/article/10.1023/B%3ADIEQ.0000047035.96793.be[6] Mazhorova O.S., Popov Yu.P., Shcheritsa O.V. Conservative scheme for the thermodiffu-
sion Stefan problem.
Differential Equations
, 2013, vol. 49, no. 7, pp. 869–882.
DOI: 10.1134/S0012266113070094
Available at:
https://link.springer.com/article/10.1134/S0012266113070094[7]
Illingworth T.C., Golosnoy I.O. Numerical solutions of diffusion-controled moving
boundary problems which conserve solute.
Journal of Computation Physics
, 2005, vol. 209,
no. 1, pp. 207–225. DOI: 10.1016/j.jcp.2005.02.031
Available at:
http://www.sciencedirect.com/science/article/pii/S0021999105000859