Об одном методе решения задачи кристаллизации многокомпонентного раствора…
ISSN 1812-3368. Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки. 2017. № 5
137
[8]
Bakirova O.I. Chislennoe modelirovanie protsessa zonnoy plavki na osnove resheniya
zadachi o fazovom perekhode v binarnoy sisteme.
Matematicheskoe modelirovanie. Poluchenie
metallov i poluprovodnikovykh struktur
[Numerical simulation of zone melting process based
on solution of problem of phase transition in binary system. In: Math. modeling. Metals and
semiconductor structures production]. Moscow, Nauka Publ., 1986, pp. 142–158 (in Russ.).
[9]
Degtyarev L.M., Drozdov V.V., Ivanova T.S. The method of nets adapted to the solution
in singularly perturbed one-dimensional boundary value problems.
Differentsial'nye uravne-
niya
, 1987, vol. 23, no. 7, pp. 1160–1169 (in Russ.).
[10]
Pandelaers L., Verhaeghe F., Wollants P., Blanpain B. An implicit conservative scheme
for coupled heat and mass transfer problems with multiple moving interfaces.
Int. J. of Heat
and Mass Transfer
, 2011, vol. 54, no. 5-6, pp. 1039–1045.
[11]
Landau H.G. Heat conduction in a melting solid.
J. App. Math
., 1950, vol. 8, pp. 81–94.
[12]
Chtcheritsa O.V., Mazhorova O.S., Popov Yu.P. Implicit numerical algorithm for the so-
lution of phase transition problems in multi-component alloys.
Mathematical Modelling and
Analysis
, 2004, vol. 9, no. 4, pp. 253–266.
Available at:
http://www.tandfonline.com/doi/abs/10.1080/13926292.2004.9637258[13] Mazhorova O.S., Popov Yu.P., Pokhilko V.I. Matrichnyy algoritm chislennogo resheniya
nestatsionarnykh zadach kontsentratsionnoy konvektsii dlya mnogokomponentnykh sred.
Matematicheskoe modelirovanie. Poluchenie monokristallov i poluprovodnikovykh struktur
[Matrix algorithm of numerical solution of non-stationary concentration-induced convection
problems in multicomponent medium. Monocrystal and semiconductor structure produc-
tion]. Moscow, Nauka Publ., 1986, pp. 19–31 (in Russ.).
[14] Ghez R., Small M.B. Growth and dissolution kinetics of ternary alloys of ternary III-V
heterostructures formed by liquid phase epitaxy. III. Effect of temperature programming.
Journal of Applied Physics,
1982, vol. 53, no. 7, pp. 4907–4918. DOI: 10.1063/1.331324
[15]
Shcheritsa O.V., Mazhorova O.S., Popov Yu.P. Numerical study for diffusion processes in
dissolution and growth of CdHgTe/CdTe heterostructures formed by LPE. Part I. Isothermal
conditions.
Journal of Crystal Growth
, 2006, vol. 290, no. 2, pp. 357–362.
[16] Mazhorova O.S., Popov Yu.P., Shcheritsa O.V. Implicit numerical algorithm for solution
of phase transition problems.
Preprint instituta prikladnoy matematiki im. M.V. Keldysha RAN
[KIAM Preprint], 2004, no. 29, 42 p.
Available at:
http://library.keldysh.ru/preprint.asp?id=2004-29[17]
Samarskii A.A. Vvedenie v teoriyu raznostnykh skhem [Introduction to the theory of
difference schemes]. Moscow, Nauka Publ., 1971. 552 p.
[18]
Samarskiy A.A., Nikolaev E.S. Metody resheniya setochnykh uravneniy [Finite-difference
equation solution methods]. Moscow, Nauka Publ., 1978. 592 p.
[19] Denisov I.A., Lakeenkov V.M., Mazhorova O.S., Popov Yu.P. Mathematical simulation of
epitaxial growing of solid solutions Cd
Y
Hg
1–
Y
Te liquid phase.
Preprint instituta prikladnoy
matematiki im. M.V. Keldysha RAN
[KIAM Preprint], 1992, no. 65, 42 p. (in Russ.).
[20] Denisov I.A., Lakeenkov V.M., Mazhorova O.S., Popov Yu.P. Numerical modelling for
liquid phase epitaxy of Cd
x
Hg
1
–x
Te solid solution
. Journal of Crystal Growth
, 2002, vol. 245,
no. 1-2, pp. 21–30.