Previous Page  20 / 21 Next Page
Information
Show Menu
Previous Page 20 / 21 Next Page
Page Background

Об одном методе решения задачи кристаллизации многокомпонентного раствора…

ISSN 1812-3368. Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки. 2017. № 5

137

[8]

Bakirova O.I. Chislennoe modelirovanie protsessa zonnoy plavki na osnove resheniya

zadachi o fazovom perekhode v binarnoy sisteme.

Matematicheskoe modelirovanie. Poluchenie

metallov i poluprovodnikovykh struktur

[Numerical simulation of zone melting process based

on solution of problem of phase transition in binary system. In: Math. modeling. Metals and

semiconductor structures production]. Moscow, Nauka Publ., 1986, pp. 142–158 (in Russ.).

[9]

Degtyarev L.M., Drozdov V.V., Ivanova T.S. The method of nets adapted to the solution

in singularly perturbed one-dimensional boundary value problems.

Differentsial'nye uravne-

niya

, 1987, vol. 23, no. 7, pp. 1160–1169 (in Russ.).

[10]

Pandelaers L., Verhaeghe F., Wollants P., Blanpain B. An implicit conservative scheme

for coupled heat and mass transfer problems with multiple moving interfaces.

Int. J. of Heat

and Mass Transfer

, 2011, vol. 54, no. 5-6, pp. 1039–1045.

[11]

Landau H.G. Heat conduction in a melting solid.

J. App. Math

., 1950, vol. 8, pp. 81–94.

[12]

Chtcheritsa O.V., Mazhorova O.S., Popov Yu.P. Implicit numerical algorithm for the so-

lution of phase transition problems in multi-component alloys.

Mathematical Modelling and

Analysis

, 2004, vol. 9, no. 4, pp. 253–266.

Available at:

http://www.tandfonline.com/doi/abs/10.1080/13926292.2004.9637258

[13] Mazhorova O.S., Popov Yu.P., Pokhilko V.I. Matrichnyy algoritm chislennogo resheniya

nestatsionarnykh zadach kontsentratsionnoy konvektsii dlya mnogokomponentnykh sred.

Matematicheskoe modelirovanie. Poluchenie monokristallov i poluprovodnikovykh struktur

[Matrix algorithm of numerical solution of non-stationary concentration-induced convection

problems in multicomponent medium. Monocrystal and semiconductor structure produc-

tion]. Moscow, Nauka Publ., 1986, pp. 19–31 (in Russ.).

[14] Ghez R., Small M.B. Growth and dissolution kinetics of ternary alloys of ternary III-V

heterostructures formed by liquid phase epitaxy. III. Effect of temperature programming.

Journal of Applied Physics,

1982, vol. 53, no. 7, pp. 4907–4918. DOI: 10.1063/1.331324

[15]

Shcheritsa O.V., Mazhorova O.S., Popov Yu.P. Numerical study for diffusion processes in

dissolution and growth of CdHgTe/CdTe heterostructures formed by LPE. Part I. Isothermal

conditions.

Journal of Crystal Growth

, 2006, vol. 290, no. 2, pp. 357–362.

[16] Mazhorova O.S., Popov Yu.P., Shcheritsa O.V. Implicit numerical algorithm for solution

of phase transition problems.

Preprint instituta prikladnoy matematiki im. M.V. Keldysha RAN

[KIAM Preprint], 2004, no. 29, 42 p.

Available at:

http://library.keldysh.ru/preprint.asp?id=2004-29

[17]

Samarskii A.A. Vvedenie v teoriyu raznostnykh skhem [Introduction to the theory of

difference schemes]. Moscow, Nauka Publ., 1971. 552 p.

[18]

Samarskiy A.A., Nikolaev E.S. Metody resheniya setochnykh uravneniy [Finite-difference

equation solution methods]. Moscow, Nauka Publ., 1978. 592 p.

[19] Denisov I.A., Lakeenkov V.M., Mazhorova O.S., Popov Yu.P. Mathematical simulation of

epitaxial growing of solid solutions Cd

Y

Hg

1–

Y

Te liquid phase.

Preprint instituta prikladnoy

matematiki im. M.V. Keldysha RAN

[KIAM Preprint], 1992, no. 65, 42 p. (in Russ.).

[20] Denisov I.A., Lakeenkov V.M., Mazhorova O.S., Popov Yu.P. Numerical modelling for

liquid phase epitaxy of Cd

x

Hg

1

–x

Te solid solution

. Journal of Crystal Growth

, 2002, vol. 245,

no. 1-2, pp. 21–30.