|

Study of an Immersed Axisymmetric Turbulent Jet in Comparative Analysis of Turbulence Models

Authors: Malikov Z.M., Nazarov F.Kh. Published: 27.04.2022
Published in issue: #2(101)/2022  
DOI: 10.18698/1812-3368-2022-2-22-35

 
Category: Mathematics and Mechanics | Chapter: Mathematical Physics  
Keywords: axisymmetric turbulent jet, RANS models, two-fluid model, von Mises variables, implicit scheme

Abstract

The study comparatively analyzes RANS turbulence models, such as the Menter (SST), Spalart --- Allmaras (SA), Sekundov models, and a recently developed two-fluid model by numerical simulation of an axisymmetric immersed jet. The analysis is done by comparing the obtained numerical results with experimental data and using the results of the analysis of their numerical implementation. For all models, the same numerical algorithm is applied. To facilitate the study of a free jet, "parabolized" hydrodynamic equations are considered, for the numerical implementation of which the marching integration method is used. An absolutely stable implicit finite-difference scheme is applied. The study shows that the developed two-fluid model has advantages over other models both in terms of accuracy and simplicity of numerical implementation

Please cite this article in English as:

Malikov Z.M., Nazarov F.Kh. Study of an immersed axisymmetric turbulent jet in comparative analysis of turbulence models. Herald of the Bauman Moscow State Technical University, Series Natural Sciences, 2022, no. 2 (101), pp. 22--35 (in Russ.). DOI: https://doi.org/10.18698/1812-3368-2022-2-22-35

References

[1] Timoshenko V.I., Deshko A.E., Belotserkovets I.S. On boundary determination of viscous jet of compressible gas in a co-flow. Tekhnicheskaya mekhanika, 2012, no. 2, pp. 31--42 (in Russ.).

[2] Malikov Z.M., Stasenko A.L. Asymptotics of a submerged jet and transport processes in it. Proceedings of Moscow Institute of Physics and Technology, 2013, vol. 5, no. 2, pp. 59--68 (in Russ.).

[3] Kudimov N.F., Safronov A.V., Tretyakova O.N. Experimental study on multiple turbulent supersonic impinging jets. Trudy MAI, 2013, no. 69 (in Russ.). Available at: http://trudymai.ru/published.php?ID=43076

[4] Demenkov A.G., Ilyushin B.B., Chernykh G.G. Numerical simulation of axisymmetric turbulent jets. J. Appl. Mech. Tech. Phy., 2008, vol. 49, no. 5, pp. 749--753. DOI: https://doi.org/10.1007/s10808-008-0093-4

[5] Pakhomov M.A., Terekhov V.I. Numerical simulation of turbulent flow in a polydispersed two-phase jet with evaporating droplets. Matematicheskoe modelirovanie, 2016, vol. 28, no. 11, pp. 64--78 (in Russ.).

[6] Demidova O.L. Numerical simulation of swirling jets with nonequilibrium chemical processes. Trudy MAI, no. 57 (in Russ.). Available at: http://trudymai.ru/published.php?ID=30701

[7] Belov I.A., Isaev S.A. Modelirovanie turbulentnykh techeniy [Modeling of turbulent flows]. St. Petersburg, BSTU Publ., 2001.

[8] Volkov K.N., Emelyanov V.N. Modelirovanie krupnykh vikhrey v raschetakh turbulentnykh techeniy [Simulation of large eddies in turbulent flow calculation]. Moscow, FIZMATLIT Publ., 2008.

[9] Frolich J., von Terzi D. Hybrid LES/RANS methods for the simulation of turbulent flows. Prog. Aerosp. Sci., 2008, vol. 44, iss. 5, pp. 349--377. DOI: https://doi.org/10.1016/j.paerosci.2008.05.001

[10] Haase W., Braza M., Revell A. DESider --- a European effort on hybrid RANS-LES modelling. Notes on Numerical Fluid Mechanics and Multidisciplinary Design. Berlin, Heidelberg, Springer, 2009. DOI: https://doi.org/10.1007/978-3-540-92773-0

[11] Malikov Z.M. Mathematical model of turbulence based on the dynamics of two fluids. Appl. Math. Model., 2020, vol. 82, pp. 409--436. DOI: https://doi.org/10.1016/j.apm.2020.01.047

[12] Spalart P.R., Allmaras S.R. A one-equation turbulence model for aerodynamic flows. AIAA Paper, 1992, no. 1992-0439. DOI: https://doi.org/10.2514/6.1992-439

[13] Menter F.R. Zonal two-equation k--ω turbulence models for aerodynamic flows. AIAA Paper, 1993, no. 1993-2906. DOI: https://doi.org/10.2514/6.1993-2906

[14] Menter F.R., Kuntz M., Langtry R. Ten years of industrial experience with the SST turbulence model. In: Turbulence, Heat and Mass Transfer 4. Begell House, 2003, pp. 625--632.

[15] Shur M., Strelets M., Zajkov L., et al. Comparative numerical testing of one- and two-equation turbulence models for flows with separation and reattachment. AIAA Paper, 1995, no. 1995-0863. DOI: https://doi.org/10.2514/6.1995-863

[16] Malikov Z.M. Mathematical model of turbulent heat transfer based on the dynamics of two fluids. Appl. Math. Model., 2021, vol. 91, pp. 186--213. DOI: https://doi.org/10.1016/j.apm.2020.09.029

[17] Malikov Z.M., Madaliev M.E. Numerical simulation of two-phase flow in a centrifugal separator. Fluid Dyn., 2020, vol. 55, no. 8, pp. 1012--1028. DOI: https://doi.org/10.1134/S0015462820080066

[18] Nazarov F.Kh., Malikov Z.M., Rakhmanov N.M. Simulation and numerical study of two-phase flow in a centrifugal dust catcher. J. Phys.: Conf. Ser., 2020, vol. 1441, art. 012155. DOI: https://doi.org/10.1088/1742-6596/1441/1/012155

[19] Turbulence modeling resource: website. Available at: http://turbmodels.larc.nasa.gov (accessed: 15.01.2022).

[20] Bimatov V.I., Savkina N.V., Farapanov V.V. Supersonic flow over a sharp cone and its aerodynamic characteristics for different models of turbulent viscosity. Tomsk State University Journal of Mathematics and Mechanics, 2016, no. 5, pp. 35--42 (in Russ.).

[21] von Mises R. Bernerkungen zur Hydrodynamik. Z. Angew. Math. Mech., 1927, no. 7, p. 425.