Kinetics of Phonon Interaction Taken into Account in Determining Thermal Conductivity of Silicon

Authors: Khvesyuk V.I., Qiao W., Barinov A.A. Published: 23.06.2022
Published in issue: #3(102)/2022  
DOI: 10.18698/1812-3368-2022-3-57-68

Category: Physics | Chapter: Thermal Physics and Theoretical Heat Engineering  
Keywords: solid, phonons, diffusion, thermal conductivity


The thorough study of the heat carriers --- quasiparticles --- phonons interaction resulted in a pioneering method for calculating the thermal conductivity of nonmetallic solids. As the interactions of phonons are much more complicated than those of usual atoms and molecules, it is necessary to take into account the presence of two types of phonons with different properties; the decay of one phonon into two or the fusion of two phonons into one as a result of interaction; the presence of two types of interaction of phonons, one of which is elastic, the other is inelastic (moreover, the type of interaction results from solving the energy and quasi-momentum conservation equations). The existing methods for determining thermal conductivity, which typically involve solving the Boltzmann transport equation, use the iteration method, whose parameter is the average time between successive phonon interactions, and the calculation results provide little information on all types of interactions. In this research, we developed a method of direct Monte Carlo simulation of phonon diffusion with strict account for their interaction owing to the energy and quasi-momentum conservation laws. Calculations of the thermal conductivity coefficient for pure silicon in the temperature range of 100---300 K showed good agreement with the experiment and calculations of other authors, and also made it possible to consider the phonon kinetics in detail

Please cite this article in English as:
Khvesyuk V.I., Qiao W., Barinov A.A. Kinetics of phonon interaction taken into account in determining thermal conductivity of silicon. Herald of the Bauman Moscow State Technical University, Series Natural Sciences, 2022, no. 3 (102), pp. 57--68 (in Russ.). DOI: https://doi.org/10.18698/1812-3368-2022-3-57-68


[1] Omini M., Sparavigna A. Beyond the isotropic-model approximation in the theory of thermal conductivity. Phys. Rev. B, 1996, vol. 53, iss. 14, pp. 9064--9073. DOI: https://doi.org/10.1103/PhysRevB.53.9064

[2] Baroni S., de Gironcoli S., Dal Corso A., et al. Phonons and related crystal properties from density-functional perturbation theory. Rev. Mod. Phys., 2001, vol. 73, iss. 2, pp. 515--562. DOI: https://doi.org/10.1103/RevModPhys.73.515

[3] Mingo N., Yang L. Phonon transport in nanowires coated with an amorphous material: An atomistic Green’s function approach. Phys. Rev. B, 2003, vol. 68, iss. 24, art. 245406. DOI: https://doi.org/10.1103/PhysRevB.68.245406

[4] Savic I., Mingo N., Stewart D.A. Phonon transport in isotope-disordered carbon and boron-nitride nanotubes: is localization observable? Phys. Rev. Lett., 2008, vol. 101, iss. 16, art. 165502. DOI: https://doi.org/10.1103/PhysRevLett.101.165502

[5] Khvesyuk V.I., Qiao W., Barinov A.A. The effect of phonon diffusion on heat transfer. J. Phys.: Conf. Ser., 2019, vol. 385, art. 012046. DOI: https://doi.org/10.1088/1742-6596/1385/1/012046

[6] Bekman I.N. Matematika diffuzii [Diffusion mathematics]. Moscow, OntoPrint Publ., 2016.

[7] Kukita K., Kamakura K. Monte Carlo simulation of phonon transport in silicon including a realistic dispersion relation. J. Appl. Phys., 2013, vol. 114, no. 15, art. 154312. DOI: https://doi.org/10.1063/1.4826367

[8] Feng T., Qiu B., Ruan X. Coupling between phonon-phonon and phonon-impurity scattering: a critical revisit of the spectral Matthiessen’s rule. Phys. Rev. B, 2015, vol. 92, iss. 23, art. 235206. DOI: https://doi.org/10.1103/PhysRevB.92.235206

[9] Ashcroft N.W., Mermin N.D. Solid state physics. Holt, Rinehart and Winston, 1976.

[10] Vermeersch B., Mohammed A.M.S., Pernot G., et al. Superdiffusive heat conduction in semiconductor alloys. II. Truncated Lévy formalism for experimental analysis. Phys. Rev. B, 2015, vol. 91, iss. 8, art. 085203. DOI: https://doi.org/10.1103/PhysRevB.91.085203

[11] Barinov A.A., Liu B., Khvesyuk V.I., et al. Updated model for thermal conductivity calculation of thin films of silicon and germanium. Phys. Atom. Nuclei, 2020, vol. 83, no. 10, pp. 1539--1542. DOI: https://doi.org/10.1134/S1063778820100038

[12] Ward A., Broido D.A. Intrinsic phonon relaxation times from first-principles studies of the thermal conductivities of Si and Ge. Phys. Rev. B, 2010, vol. 81, iss. 8, art. 085205. DOI: https://doi.org/10.1103/PhysRevB.81.085205

[13] Khvesyuk V.I., Qiao W., Barinov A.A. Modeling of phonon diffusion using a Monte-Carlo method based on physics of phonon. J. Phys.: Conf. Ser., 2019, vol. 1368, no. 4, art. 042051. DOI: https://doi.org/10.1088/1742-6596/1368/4/042051

[14] Herpin A. Contribution a l’etude de la théorie cinétique des solides. Ann. Phys., 1952, vol. 12, no. 7, pp. 91--139. DOI: https://doi.org/10.1051/anphys/195212070091

[15] Klemens P.G. Lattice thermal conductivity. Solid State Phys., 1958, vol. 7, no. 1, pp.1--98. DOI: https://doi.org/10.1016/S0081-1947(08)60551-2

[16] Mazumder S., Majumdar A. Monte Carlo study of phonon transport in solid thin films including dispersion and polarization. J. Heat Transfer, 2001, vol. 123, no. 4, pp. 749--759. DOI: https://doi.org/10.1115/1.1377018

[17] Mingo N., Stewart D.A., Broido D.A., et al. Ab initio thermal transport. In: Shin-de S.L., Srivastava G.P. (eds). Length-Scale Dependent Phonon Interactions. Topics in Applied Physics, vol. 128. New York, Springer, 2014, pp 137--173. DOI: https://doi.org/10.1007/978-1-4614-8651-0_5

[18] Inyushkin A.V., Taldenkov A.N., Giblin A.M., et al. On the isotope effect in thermal conductivity of silicon. Phys. Stat. Solid C, Spec. Iss.: The 11th International Conference on Phonon Scattering in Condensed Matter (Phonons2004), 2004, vol. 1, iss. 11, pp. 2995--2998. DOI: https://doi.org/10.1002/pssc.200405341