Background Image
Previous Page  3 / 10 Next Page
Information
Show Menu
Previous Page 3 / 10 Next Page
Page Background

Δ

u

(

x, y

) = 0

, x

R

n

,

0

< y < a ,

in order to satisfy the boundary conditions

u

(

x,

0) =

ϕ

(

x

)

, x

R

n

;

u

y

(

x, a

) =

ψ

(

x

)

, x

R

n

.

Solution of the problem for the general case. Derivation of the

recurrence relation.

Let us apply the Fourier transform on

x

to the Laplace

equation, denoting

U

(

t, y

) =

F

x

[

u

] (

t, y

) ; Φ (

t

) =

F

[

ϕ

] (

t

) ; Ψ (

t

) =

F

[

ψ

](

t

)

.

We will obtain a boundary value problem for an ordinary differential

equation with a parameter

t

R

n

:

− |

t

|

2

U

(

t, y

) +

U

yy

(

t, y

) = 0;

U

(

t,

0) = Φ (

t

)

, U

y

(

t, a

) = Ψ (

t

)

.

The solution to this boundary value problem is a function

U

(

t, y

) = Φ (

t

)

ch(

|

t

|

(

a

y

))

ch(

a

|

t

|

)

+ Ψ (

t

)

sh (

|

t

|

y

)

|

t

|

ch (

a

|

t

|

)

.

Applying the inverse Fourier transform, we are finding the solution to the

original mixed boundary value problem as a convolution

u

(

x, y

) =

ϕ

(

x

)

K

n

(

x, y

) +

ψ

(

x

)

L

n

(

x, y

)

,

(1)

where the kernels are designated as

K

n

(

x, y

) =

F

1

t

[

k

n

] (

x, y

)

, k

n

(

|

t

|

, y

) =

ch (

|

t

|

(

a

y

))

ch(

a

|

t

|

)

, t

R

n

;

L

n

(

x, y

) =

F

1

t

[

l

n

] (

x, y

)

, l

n

(

|

t

|

, y

) =

sh (

|

t

|

y

)

|

t

|

ch (

a

|

t

|

)

, t

R

n

.

Since

∂y

l

n

(

|

t

|

, y

) =

k

n

(

|

t

|

, a

y

)

,

then

∂y

L

n

(

x, y

) =

K

n

(

x, a

y

)

and

∂y

L

n

(

x, y

)

as

y

a

0

, behaves in the same way as

K

n

(

x, y

)

if

y

+0

.

ISSN 1812-3368. Herald of the BMSTU. Series “Natural Sciences”. 2015. No. 1

5