Background Image
Previous Page  7 / 10 Next Page
Information
Show Menu
Previous Page 7 / 10 Next Page
Page Background

where

G

(

x, y, t, τ

) =

1

4

π

X

n

=

−∞

1

r

n

1

1

r

n

2

;

r

n

1

=

q

|

x

t

|

2

+ [

y

(

1)

n

τ

2

na

]

2

;

r

n

2

=

q

|

x

t

|

2

+ [

y

+ (

1)

n

τ

2

na

]

2

.

Solution to the mixed boundary value problem for an infinite layer

in four-dimensional space.

Let us show how to apply the recurrence

relation for the solution to the mixed boundary value problem for spaces

of arbitrary dimension illustrated by the example of an infinite layer in the

four-dimensional space. We find kernels from the recurrent formulae.

K

3

(

x, y

) =

1

2

πr

∂r

K

1

(

r, y

) =

1

2

πr

∂r

 

1

a

sin

πy

2

a

ch

πr

2

a

ch

πr

a

cos

πy

a

 

=

=

2 + cos

πy

a

+ ch

πr

a

sin

πy

2

a

sh

πr

2

a

4

a

2

r

cos

πy

a

ch

πr

a

2

=

=

2 + cos

πy

a

+ ch

π

p

x

2

1

+

x

2

2

+

x

2

3

a

!!

sin

πy

2

a

sh

π

p

x

2

1

+

x

2

2

+

x

2

3

2

a

!

4

a

2

p

x

2

1

+

x

2

2

+

x

2

3

cos

πy

a

ch

π

p

x

2

1

+

x

2

2

+

x

2

3

a

!!

2

;

L

3

(

x, y

) =

1

2

πr

∂r

L

1

(

r, y

) =

1

2

πr

∂r

 

1

2

π

ln

 

ch

πr

2

a

+ sin

πy

2

a

ch

πr

2

a

sin

πy

2

a

   

=

=

sin

πy

2

a

sh

πr

2

a

2

πar

cos

πy

a

+ ch

πr

a

=

=

sin

πy

2

a

sh

π

p

x

2

1

+

x

2

2

+

x

2

3

2

a

!

2

πa

p

x

2

1

+

x

2

2

+

x

2

3

cos

πy

a

+ ch

π

p

x

2

1

+

x

2

2

+

x

2

3

a

!!

.

If the functions

ϕ

(

x

)

and

ψ

(

x

)

are normal functions of polynomial

growth, the solution to the mixed problem is written as the integral formula

ISSN 1812-3368. Herald of the BMSTU. Series “Natural Sciences”. 2015. No. 1

9