Conjugate harmonic function has the form of an equation of the
streamlines (see. figure).
v
(
x, y
) =
ϕ
1
−
ϕ
2
2
π
ln
ch (
πx/
2
a
) + cos (
πy/
2
a
)
ch (
πx/
2
a
)
−
cos (
πy/
2
a
)
,
Conclusion.
The obtained formulae for the solution to a mixed
boundary value problem for the Laplace equation in an infinite layer can
also be applied when the boundary values are the tempered distributions.
In this case the solution is a generalized one, i.e.
u
(
x, y
)
and
u
y
(
x, y
)
when
y
→
+0
and thus
y
→
a
−
0
converge weakly in the space
S
0
(
R
n
)
to the
given boundary values. In case of two variables the specified formulae can
be used to solve plane problems of the underground fluid dynamics (the
theory of filtration).
REFERENCES
[1] Komech A.I. Linear partial differential equations with constant coefficients.
Itogi
Nauki i Tekhniki. Ser. Sovrem. Probl. Mat.: Fund. Napr.
[Results of science and
technology. Ser. “Modern Problems of Mathematics: Fundamental Directions”], 1988,
vol. 31, pp. 127–261 (in Russ.). Available at:
http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=intf&paperid=113&option_lang=eng (accessed 01.11.2014).
[2] Mikhlin S.G. Lineynye uravneniya v chastnykh proizvodnykh [Linear partial
differential equations]. Мoscow, Vysshaya Shkola Publ., 1977. 430 p.
[3] Bitsadze A.V. Uravneniya matematicheskoy fiziki [Equations of mathematical
physics]. Moscow, Fizmatgiz Publ., 1976. 296 p. (Engl. ed.: Bitsadze A.V.
Equations of mathematical physics. Moscow, Mir Publishers, 1980. 318
p.). Available at:
http://www.amazon.com/Equations-Mathematical-Physics-A-V-Bitsadze/dp/0714715433 (accessed 01.11.2014).
[4] Tikhonov A.N., Samarskiy A.A. Uravneniya matematicheskoy fiziki [Equations of
mathematical physics]. Moscow, MGU Publ., 1999. 798 p. (Engl. ed.: Tikhonov
A.N., Samarskii A.A. Equations of mathematical physics. Dover Publications;
Reprint edition, 2011. 800 p.). Available at:
http://www.amazon.com/Equations-Mathematical-Physics-Dover-Books/dp/0486664228 (accessed 01.11.2014).
[5] Polyanin A.D. Spravochnik po lineynym uravneniyam matematicheskoy fiziki
[Handbook of linear equations of mathematical physics]. Moscow, Fizmatlit Publ.,
2001. 576 p. (Engl. ed.: Polyanin A.D. Handbook of linear partial differential
equations for engineers and scientists. USA, Chapman and Hall/CRC, 2001. 800 p.).
[6] Kas’yanov
E.Yu., Kopaev A.V. On the solution of the Dirichlet problem for some
multidimensional domains by the method of reproducing kernels.
Izv. Vyssh. Uchebn.
Zaved., Mat.
[Russ. Math.], 1991, no. 6, pp. 17–20 (in Russ.).
[7] Vladimirov V.S. Obobshchennye funktsii v matematicheskoy fizike [Tempered
distributions in mathematical physics]. Moscow, Nauka Publ., 1979. 320 p.
[8] Bochner S. Vorlesungen ьber Fouriersche Integrale. Leipzig, Akademische
Verlagsgesellschaft m.b. H. VIII, 1932. 229 p. (Engl. ed.: Bochner S. Lectures on
Fourier integrals. Trans. from the Ger. Princeton Uni. Press, 1959. 333 p. Russ. ed.:
Bokhner S. Lektsii ob integralakh Fur’e [Lectures on Fourier integrals]. Moscow,
Fizmatgiz Publ., 1962. 360 p.).
ISSN 1812-3368. Herald of the BMSTU. Series “Natural Sciences”. 2015. No. 1
11