Background Image
Previous Page  9 / 10 Next Page
Information
Show Menu
Previous Page 9 / 10 Next Page
Page Background

Conjugate harmonic function has the form of an equation of the

streamlines (see. figure).

v

(

x, y

) =

ϕ

1

ϕ

2

2

π

ln

ch (

πx/

2

a

) + cos (

πy/

2

a

)

ch (

πx/

2

a

)

cos (

πy/

2

a

)

,

Conclusion.

The obtained formulae for the solution to a mixed

boundary value problem for the Laplace equation in an infinite layer can

also be applied when the boundary values are the tempered distributions.

In this case the solution is a generalized one, i.e.

u

(

x, y

)

and

u

y

(

x, y

)

when

y

+0

and thus

y

a

0

converge weakly in the space

S

0

(

R

n

)

to the

given boundary values. In case of two variables the specified formulae can

be used to solve plane problems of the underground fluid dynamics (the

theory of filtration).

REFERENCES

[1] Komech A.I. Linear partial differential equations with constant coefficients.

Itogi

Nauki i Tekhniki. Ser. Sovrem. Probl. Mat.: Fund. Napr.

[Results of science and

technology. Ser. “Modern Problems of Mathematics: Fundamental Directions”], 1988,

vol. 31, pp. 127–261 (in Russ.). Available at:

http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=intf&paperid=

113&option_lang=eng (accessed 01.11.2014).

[2] Mikhlin S.G. Lineynye uravneniya v chastnykh proizvodnykh [Linear partial

differential equations]. Мoscow, Vysshaya Shkola Publ., 1977. 430 p.

[3] Bitsadze A.V. Uravneniya matematicheskoy fiziki [Equations of mathematical

physics]. Moscow, Fizmatgiz Publ., 1976. 296 p. (Engl. ed.: Bitsadze A.V.

Equations of mathematical physics. Moscow, Mir Publishers, 1980. 318

p.). Available at:

http://www.amazon.com/Equations-Mathematical-Physics-A-V-

Bitsadze/dp/0714715433 (accessed 01.11.2014).

[4] Tikhonov A.N., Samarskiy A.A. Uravneniya matematicheskoy fiziki [Equations of

mathematical physics]. Moscow, MGU Publ., 1999. 798 p. (Engl. ed.: Tikhonov

A.N., Samarskii A.A. Equations of mathematical physics. Dover Publications;

Reprint edition, 2011. 800 p.). Available at:

http://www.amazon.com/Equations-

Mathematical-Physics-Dover-Books/dp/0486664228 (accessed 01.11.2014).

[5] Polyanin A.D. Spravochnik po lineynym uravneniyam matematicheskoy fiziki

[Handbook of linear equations of mathematical physics]. Moscow, Fizmatlit Publ.,

2001. 576 p. (Engl. ed.: Polyanin A.D. Handbook of linear partial differential

equations for engineers and scientists. USA, Chapman and Hall/CRC, 2001. 800 p.).

[6] Kas’yanov

E.Yu.

, Kopaev A.V. On the solution of the Dirichlet problem for some

multidimensional domains by the method of reproducing kernels.

Izv. Vyssh. Uchebn.

Zaved., Mat.

[Russ. Math.], 1991, no. 6, pp. 17–20 (in Russ.).

[7] Vladimirov V.S. Obobshchennye funktsii v matematicheskoy fizike [Tempered

distributions in mathematical physics]. Moscow, Nauka Publ., 1979. 320 p.

[8] Bochner S. Vorlesungen ьber Fouriersche Integrale. Leipzig, Akademische

Verlagsgesellschaft m.b. H. VIII, 1932. 229 p. (Engl. ed.: Bochner S. Lectures on

Fourier integrals. Trans. from the Ger. Princeton Uni. Press, 1959. 333 p. Russ. ed.:

Bokhner S. Lektsii ob integralakh Fur’e [Lectures on Fourier integrals]. Moscow,

Fizmatgiz Publ., 1962. 360 p.).

ISSN 1812-3368. Herald of the BMSTU. Series “Natural Sciences”. 2015. No. 1

11