Background Image
Previous Page  5 / 10 Next Page
Information
Show Menu
Previous Page 5 / 10 Next Page
Page Background

It is easy to test the feasibility of the following properties in the area

D

:

1)

K

n

(

x, y

)

>

0

;

2)

Z

R

n

K

n

(

x, y

)

dx

= 1

;

3) when

δ >

0

,

lim

y

+0

sup

|

x

|≥

δ

K

n

(

x, y

) = 0

.

These properties mean that

K

n

(

x, y

)

is an

approximate identity

, or

δ

-shaped system of functions of

x

(with parameter

y

). When

y

+0

,

K

n

(

x, y

)

converges weakly to a

δ

-function

δ

(

x

)

. Since

∂y

L

n

(

x, y

) =

K

n

(

x, a

y

)

,

∂y

L

n

(

x, y

)

is an approximate identity as

y

a

0

.

Therefore, if

ϕ

(

x

)

∈ S

0

(

R

n

)

and

ψ

(

x

)

∈ S

0

(

R

n

)

, then the formula (1)

gives a generalized solution to the problem:

lim

y

+0

u

(

x, y

) =

ϕ

(

x

)

in

S

0

;

lim

y

a

0

u

y

(

x, y

) =

ψ

(

x

)

in

S

0

.

If the functions

ϕ

(

x

)

and

ψ

(

x

)

are normal functions of polynomial

growth, than at each point of continuity

lim

y

+0

u

(

x, y

) =

ϕ

(

x

) ; lim

y

a

0

u

y

(

x, y

) =

ψ

(

x

)

.

Solution to the mixed boundary value problem for the bandwidth

on the plane.

In the case of two variables in view of parity functions in

t

(

k

1

(

|

t

|

, y

) =

k

1

(

t, y

)

,

l

1

(

|

t

|

, y

) =

l

1

(

t, y

))

, the inverse Fourier transform

can be found from the tables [9]:

F

1

t

[

k

1

] (

x, y

) =

1

a

sin

πy

2

a

ch

πx

2

a

ch

πx

a

cos

πy

a

=

K

1

(

x, y

) ;

F

1

t

[

l

1

] (

x, y

) =

1

2

π

ln

 

ch

πx

2

a

+ sin

πy

2

a

ch

πx

2

a

sin

πy

2

a

 

=

L

1

(

x, y

)

.

If the functions

ϕ

(

x

)

and

ψ

(

x

)

are the functions of polynomial growth,

then the solution to the mixed problem is written as the integral formula

u

(

x, y

) =

1

a

sin

πy

2

a

Z

−∞

ϕ

(

t

)

ch

π

(

x

t

)

2

a

ch

π

(

x

t

)

a

cos

πy

a

dt

+

ISSN 1812-3368. Herald of the BMSTU. Series “Natural Sciences”. 2015. No. 1

7