Background Image
Previous Page  4 / 23 Next Page
Information
Show Menu
Previous Page 4 / 23 Next Page
Page Background

equivalent points to the same value. This fact facilitates description of

the trajectories generated on

S

3

by solutions to equation (1). To be more

precise, by their restrictions on the intervals where some derivative has

constant sign.

E.g., when a solution is positive, the trajectory generated can be

described by the following differential equations:

du

+

1

dx

=

y

00

|

y

|

k

+3

4

sgn

y

k

+ 3

4

y

0

2

|

y

|

k

+7

4

=

=

|

y

|

k

1

4

u

+

2

k

+ 3

4

u

+2

1

;

du

+

2

dx

=

y

000

|

y

|

2

k

+2

4

sgn

y

2

k

+ 2

4

y

0

y

00

|

y

|

2

k

+6

4

=

=

|

y

|

k

1

4

u

+

3

2

k

+ 2

4

u

+

1

u

+

2

;

du

+

3

dx

=

p

0

|

y

|

k

3

k

+1

4

3

k

+ 1

4

y

0

y

000

|

y

|

3

k

+5

4

=

=

|

y

|

k

1

4

p

0

3

k

+ 1

4

u

+

1

u

+

3

.

Parameterizing it by

t

u

=

x

Z

x

0

|

y

|

k

1

4

dx,

we obtain its internal description

in terms of

u

+

j

:

du

+

1

dt

u

=

u

+

2

k

+ 3

4

u

+2

1

;

du

+

2

dt

u

=

u

+

3

2

k

+ 2

4

u

+

1

u

+

2

;

du

+

3

dt

u

=

p

0

3

k

+ 1

4

u

+

1

u

+

3

.

The same equations appear for

(

u

1

, u

2

, u

3

)

.

Similar calculations yield

equations for other charts:

dv

±

0

dt

v

= 1

4

k

+ 3

v

±

0

v

±

2

;

dv

±

2

dt

v

=

v

±

3

2

k

+ 2

k

+ 3

v

±

2

2

;

dv

±

3

dt

v

=

p

0

v

±

0

k

sgn

v

±

0

3

k

+ 1

k

+ 3

v

±

2

v

±

3

,

dw

±

0

dt

w

=

w

±

1

4

2

k

+ 2

w

±

0

w

±

3

;

dw

±

1

dt

w

= 1

k

+ 3

2

k

+ 2

w

±

1

w

±

3

;

dw

±

3

dt

w

=

p

0

w

±

0

k

sgn

w

±

0

3

k

+ 1

2

k

+ 2

w

±

2

3

,

6

ISSN 1812-3368. Вестник МГТУ им. Н.Э. Баумана. Сер. “Естественные науки”. 2015. № 2