Background Image
Previous Page  11 / 23 Next Page
Information
Show Menu
Previous Page 11 / 23 Next Page
Page Background

Fig. 2. Zeroes of the derivatives of a typical solution

y

0

(

x

00

j

)

<

|

y

0

(

x

j

)

|

< y

0

(

x

000

j

+1

)

< y

0

(

x

00

j

+1

) ;

(10)

y

00

(

x

000

j

)

< y

00

(

x

0

j

)

<

|

y

00

(

x

j

)

|

< y

00

(

x

000

j

+1

) ;

(11)

|

y

000

(

x

j

)

|

< y

000

(

x

00

j

+1

)

< y

000

(

x

0

j

+1

)

<

|

y

000

(

x

j

+1

)

|

.

(12)

J

Indeed,

p

0

k

+ 1

y

(

x

0

j

)

k

+1

y

(

x

000

j

+1

)

k

+1

=

p

0

x

000

j

+1

Z

x

0

j

y

0

(

x

)

|

y

(

x

)

|

k

1

y

(

x

)

dx

=

=

x

000

j

+1

Z

x

0

j

y

0

(

x

)

y

IV

(

x

)

dx

=

y

0

(

x

)

y

000

(

x

)

x

000

j

+1

x

0

j

x

000

j

+1

Z

x

0

j

y

00

(

x

)

y

000

(

x

)

dx <

0

,

since

y

00

(

x

)

y

000

(

x

)

>

0

for all

x

x

0

j

, x

000

j

+1

and

y

0

(

x

0

j

) =

y

000

(

x

000

j

+1

) = 0

.

This gives the first of inequalities (9), whereas the rest inequalities follow

from

y

(

x

)

y

0

(

x

)

>

0

on the interval

x

000

j

+1

, x

0

j

+1

.

Similarly, for the first of inequalities (10) we have

y

0

(

x

00

j

)

2

y

0

(

x

j

)

2

=

=

2

x

j

Z

x

00

j

y

0

(

x

)

y

00

(

x

)

dx

=

2

y

(

x

)

y

00

(

x

)

x

j

x

00

j

+ 2

x

j

Z

x

00

j

y

(

x

)

y

000

(

x

)

dx <

0

, since

y

(

x

j

) =

y

00

(

x

00

j

) = 0

and

y

(

x

)

y

000

(

x

)

<

0

on

x

00

j

, x

j

.

The rest ones follow

from the inequality

y

0

(

x

)

y

00

(

x

)

>

0

on

x

j

, x

00

j

+1

.

In the same way, for the first of (11) we have

y

00

(

x

000

j

)

2

y

00

(

x

0

j

)

2

=

2

x

0

j

Z

x

000

j

y

00

(

x

)

y

000

(

x

)

dx

=

=

2

y

0

(

x

)

y

000

(

x

)

x

0

j

x

000

j

+ 2

x

0

j

Z

x

000

j

y

0

(

x

)

y

IV

(

x

)

dx <

0

,

ISSN 1812-3368. Вестник МГТУ им. Н.Э. Баумана. Сер. “Естественные науки”. 2015. № 2

13