Background Image
Previous Page  8 / 23 Next Page
Information
Show Menu
Previous Page 8 / 23 Next Page
Page Background

and the only possible passages between

Ω

and

Ω

+

are

 

+

+

+

 

 

+

+

 

 

+

 

,

 

+

+

 

 

+

+

+

 

 

+

+

+

+

 

,

 

+

 

 

+

+

 

 

+

 

,

 

+

+

+

+

 

 

+

+

+

 

 

+

+

 

,

 

+

 

 

+

+

 

 

+

+

+

 

,

 

+

+

 

 

+

 

 

 

,

 

+

+

+

 

 

+

+

 

 

+

+

+

 

,

 

 

 

+

 

 

+

+

 

,

always from

Ω

to

Ω

+

.

So, any trajectory generated by a non-trivial solution can perform only

one passage between

Ω

and

Ω

+

,

which can be only from

Ω

to

Ω

+

.

I

Lemma 4.

There exist trajectories of all three types mentioned in

Lemma 3, namely

trajectories lying completely in

Ω

;

trajectories lying completely in

Ω

+

;

trajectories with a single passage

Ω

Ω

+

.

J

Any solution to (1) with initial data corresponding to a point from

Ω

Ω

+

generates a trajectory of the 3rd type. E.g., the solution with initial

data

y

0

(0) = 0

, y

(0) =

y

00

(0) =

y

000

(0) = 1

generates a trajectory with the

passage

 

+

+

+

 

Ω

 

+

+

+

+

 

Ω

+

.

If there exists a solution

y

(

x

)

to (1) generating a trajectory lying

completely in

Ω

,

then the function

z

(

x

) =

y

(

x

)

is also a solution

10

ISSN 1812-3368. Вестник МГТУ им. Н.Э. Баумана. Сер. “Естественные науки”. 2015. № 2