14.
Касаткина Т.С.
,
Крищенко А.П
. Решение терминальной задачи для систем
3-го порядка методом орбитальной линеаризации // Наука и образование.
МГТУ им. Н.Э. Баумана. Электрон. журн. 2014. № 12. С. 781–797.
URL:
http://technomag.bmstu.ru/doc/742829.htmlDOI: 10.7463/1214.0742829
15.
Крищенко А.П
. Параметрические множества решений интегральных уравнений.
Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки. 2014. № 3. С. 3–10.
16.
Касаткина Т.С.
,
Крищенко А.П
. Метод вариаций решения терминальных задач
для двумерных систем канонического вида при наличии ограничений // Нау-
ка и образование. МГТУ им. Н.Э. Баумана. Электрон. журн. 2015. № 5. URL:
http://technomag.bmstu.ru/doc/766238.htmlС. 266–280. DOI: 10.7463/0515.076623
17.
Краснощеченко В.И.
,
Крищенко А.П
. Нелинейные системы: геометрические ме-
тоды анализа и синтеза. М.: Изд-во МГТУ им. Н.Э. Баумана, 2005. 520 с.
REFERENCES
[1] Arutyunov A.V., Aseev S.M. The Degeneracy Phenomenon in Optimal Control
Problems with State Constraints.
In Proceedings of 36th IEEE Conference on
Decision and Control
, 1997, vol. 1, pp. 300–304.
[2] Zeidan V. Second-order Conditions for Optimal Control Problems with Mixed State-
Control Constraints.
Proceedings of the 32nd on Decision and Control
. San Antonio,
Texas, 1993, pp. 3800–3806.
[3] Pales Z., Zeidan V. Strong Local Optimality Conditions for Control Problems with
Mixed State-Control Constraints.
Proceedings of the 41st IEEE Conference on
Decision and Control
. Las Vegas, USA, Dec. 2002, pp. 4738–4744.
[4] Huifang W., Yangzhou C., Soueres P. A Geometric Algorithm to Compute Time-
Optimal Trajectories for a Bidirectional Steered Robot.
IEEE Transaction on
Robotics
, 2009, vol. 25, iss. 2, pp. 399–413.
[5] Velagic J., Delic E. Calculation of optimal trajectories of mobile robot based on
minimal curving radius and task free based approach.
13th International Symposium
on Information, Communication and Automation Technologies
. Sarajevo, 27–29 Oct.,
2011, pp. 1–8.
[6] Patil D.U., Chakraborty D. Computation of Optimal Feedback Control Using
Groebner Basis.
IEEE Transaction on Automatic Control
, 2014, vol. 59, iss. 8,
pp. 2271–2276.
[7] Fetisov D.A. Solving terminal control problems for affine systems.
Nauka i
obrazovanie
.
MGTU im. N.E. Baumana
[Science & Education of the Bauman
MSTU. Electronic Journal], 2013. no. 10, pp. 123–137. Available at:
http://technomag.bmstu.ru/doc/604151.htmlDOI: 10.7463/1013.0604151
[8] Fetisov D.A. A method for solving terminal control problems for affine systems.
Nauka i obrazovanie
.
MGTU im. N.E. Baumana
[Science & Education of the
Bauman MSTU. Electronic Journal], 2013. no. 11, pp. 383–401. Available at:
http://technomag.bmstu.ru/doc/622543.htmlDOI: 10.7463/1113.0622543
[9] Fetisov D.A. Solving terminal problems for multidimensional affine systems
based on transformation to a quasicanonical form.
Vestn. Mosk. Gos. Tekh. Univ.
im. N.E. Baumana, Estestv. Nauki
[Herald of the Bauman Moscow State Tech. Univ.,
Nat. Sci.], 2014, no. 5, pp. 16–31 (in Russ.).
[10] Fetisov D.A. Sufficient Controllability Condition for Multidimensional Affine
Systems.
Nauka i obrazovanie
.
MGTU im. N.E. Baumana
[Science & Education of
the Bauman MSTU. Electronic Journal], 2014, no. 11, pp. 281–293. Available at:
http://technomag.bmstu.ru/doc/737321.htmlDOI: 10.7463/1114.0737321
[11] Fetisov D.A. Solution of Terminal Problems for Affine Systems in Quasicanonical
Form on the Basis of Orbital Linearization.
Differential Equations
, 2014, vol. 50,
no. 12, pp. 1664–1672. DOI: 10.1134/S0012266114120106
ISSN 1812-3368. Вестник МГТУ им. Н.Э. Баумана. Сер. “Естественные науки”. 2016. № 1
25