Previous Page  9 / 10 Next Page
Information
Show Menu
Previous Page 9 / 10 Next Page
Page Background

14.

Касаткина Т.С.

,

Крищенко А.П

. Решение терминальной задачи для систем

3-го порядка методом орбитальной линеаризации // Наука и образование.

МГТУ им. Н.Э. Баумана. Электрон. журн. 2014. № 12. С. 781–797.

URL:

http://technomag.bmstu.ru/doc/742829.html

DOI: 10.7463/1214.0742829

15.

Крищенко А.П

. Параметрические множества решений интегральных уравнений.

Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки. 2014. № 3. С. 3–10.

16.

Касаткина Т.С.

,

Крищенко А.П

. Метод вариаций решения терминальных задач

для двумерных систем канонического вида при наличии ограничений // Нау-

ка и образование. МГТУ им. Н.Э. Баумана. Электрон. журн. 2015. № 5. URL:

http://technomag.bmstu.ru/doc/766238.html

С. 266–280. DOI: 10.7463/0515.076623

17.

Краснощеченко В.И.

,

Крищенко А.П

. Нелинейные системы: геометрические ме-

тоды анализа и синтеза. М.: Изд-во МГТУ им. Н.Э. Баумана, 2005. 520 с.

REFERENCES

[1] Arutyunov A.V., Aseev S.M. The Degeneracy Phenomenon in Optimal Control

Problems with State Constraints.

In Proceedings of 36th IEEE Conference on

Decision and Control

, 1997, vol. 1, pp. 300–304.

[2] Zeidan V. Second-order Conditions for Optimal Control Problems with Mixed State-

Control Constraints.

Proceedings of the 32nd on Decision and Control

. San Antonio,

Texas, 1993, pp. 3800–3806.

[3] Pales Z., Zeidan V. Strong Local Optimality Conditions for Control Problems with

Mixed State-Control Constraints.

Proceedings of the 41st IEEE Conference on

Decision and Control

. Las Vegas, USA, Dec. 2002, pp. 4738–4744.

[4] Huifang W., Yangzhou C., Soueres P. A Geometric Algorithm to Compute Time-

Optimal Trajectories for a Bidirectional Steered Robot.

IEEE Transaction on

Robotics

, 2009, vol. 25, iss. 2, pp. 399–413.

[5] Velagic J., Delic E. Calculation of optimal trajectories of mobile robot based on

minimal curving radius and task free based approach.

13th International Symposium

on Information, Communication and Automation Technologies

. Sarajevo, 27–29 Oct.,

2011, pp. 1–8.

[6] Patil D.U., Chakraborty D. Computation of Optimal Feedback Control Using

Groebner Basis.

IEEE Transaction on Automatic Control

, 2014, vol. 59, iss. 8,

pp. 2271–2276.

[7] Fetisov D.A. Solving terminal control problems for affine systems.

Nauka i

obrazovanie

.

MGTU im. N.E. Baumana

[Science & Education of the Bauman

MSTU. Electronic Journal], 2013. no. 10, pp. 123–137. Available at:

http://technomag.bmstu.ru/doc/604151.html

DOI: 10.7463/1013.0604151

[8] Fetisov D.A. A method for solving terminal control problems for affine systems.

Nauka i obrazovanie

.

MGTU im. N.E. Baumana

[Science & Education of the

Bauman MSTU. Electronic Journal], 2013. no. 11, pp. 383–401. Available at:

http://technomag.bmstu.ru/doc/622543.html

DOI: 10.7463/1113.0622543

[9] Fetisov D.A. Solving terminal problems for multidimensional affine systems

based on transformation to a quasicanonical form.

Vestn. Mosk. Gos. Tekh. Univ.

im. N.E. Baumana, Estestv. Nauki

[Herald of the Bauman Moscow State Tech. Univ.,

Nat. Sci.], 2014, no. 5, pp. 16–31 (in Russ.).

[10] Fetisov D.A. Sufficient Controllability Condition for Multidimensional Affine

Systems.

Nauka i obrazovanie

.

MGTU im. N.E. Baumana

[Science & Education of

the Bauman MSTU. Electronic Journal], 2014, no. 11, pp. 281–293. Available at:

http://technomag.bmstu.ru/doc/737321.html

DOI: 10.7463/1114.0737321

[11] Fetisov D.A. Solution of Terminal Problems for Affine Systems in Quasicanonical

Form on the Basis of Orbital Linearization.

Differential Equations

, 2014, vol. 50,

no. 12, pp. 1664–1672. DOI: 10.1134/S0012266114120106

ISSN 1812-3368. Вестник МГТУ им. Н.Э. Баумана. Сер. “Естественные науки”. 2016. № 1

25