Гибридные алгоритмы вычислительной диагностики гидромеханических систем - page 16

[9] Medeiros J.A.C., Schirru R. Identification of nuclear power plant transients using the
Particle Swarm Optimization algorithm.
Annals of Nuclear Energy
, 2008, vol. 35,
no. 4, pp. 576–582.
[10] Lippert R.A. Fixing multiple eigenvalues by a minimal perturbation //
Linear Algebra
and its Applications
, 2010, vol. 432, pp. 1785–1817.
[11] Bai Z.-J., Ching W.-K. A smoothing Newton’s method for the construction of a
damped vibrating system from noisy test eigendata.
Numerical Linear Algebra with
Applications
, 2009, vol. 16, no. 2, pp. 109–128.
[12] Poullikkas A. Effects of two-phase liquid-gas flow on the performance of nuclear
reactor cooling pumps.
Progress in Nuclear Energy
, 2003, vol. 42, no. 1, pp. 3–10.
[13] Kinelev V.G., Shkapov P.M., Sulimov V.D. Application of global optimization to
VVER-1000 reactor diagnostics.
Progress in Nuclear Energy
, 2003, vol. 43, no. 1–4,
pp. 51–56. DOI: 10.1016/S0149-1970(03)00010-6
[14] Semchenkov Yu.M., Mil’to V.A., Shumskiy B.E. Intercalation of control
methodologies of the coolant boiling in reacting core of water-cooled power reactor
VVER-1000 into system of reactor internals diagnostics
Atomnaya energiya
[Nuclear
power], 2008, vol. 105, no. 2, pp. 79–82 (in Russ.).
[15] Yang X., Schlegel J.P., Liu Y., Paranjape S., Hibiki T., Ishii M. Experimental study
of interfacial area transport in air-water two-phase flow in a scaled 8?8 BWR rod
bundle.
Int. J. Multiphase Flow
, 2013, vol. 50, pp. 16–32.
[16] O’Leary D.P., Rust B.W. Variable projection for nonlinear least squares problems.
Computational Optimization and Applications
, 2013, vol. 54, no. 3, pp. 579–593.
[17] Karmitsa N., Bagirov A., M¨aakel¨aa M.M. Comparing different nonsmooth
minimization methods and software.
Optimization Methods & Software
. 2012, vol. 27,
no. 1, pp. 131–153.
[18] Floudas C.A., Gounaris C.E. A review of recent advances in global optimization.
J.
Glob. Optim.
, 2009, vol. 45, no. 1, pp. 3–38.
[19] Luz E.F.P., Becceneri J.C., de Campos Velho H.F. A new multi-particle collision
algorithm for optimization in a high performance environment.
J. Computational
Interdisciplinary Sc.
, 2008, vol. 1, pp. 3–10. DOI: 10.6062/jcis.2008.01.01.0001
[20] Voglis C., Parsopoulos K.E., Papageorgiou D.G., Lagaris I.E., Vrahatis M.N.
MEMPSODE: A global optimization software based on hybridization of population-
based algorithms and local searches.
Computer Physics Communications
, 2012,
vol. 183, no. 2, pp. 1139–1154. DOI: 10.1016/j.cpc.2012.01.010
[21] Yuan G., Wei Z., Li G. A modified Polak – Ribi`are – Polyak conjugate gradient
algorithm for nonsmooth convex programs.
J. Computational and Applied
Mathematics
, 2014, vol. 255, pp. 86–96.
[22] Bagirov A.M., Al Nuaimat A., Sultanova N. Hyperbolic smoothing function method
for minimax problem.
Optimization: A Journal of Mathematical Programming and
Operations Research
. 2013, vol. 62, no. 6, pp. 759–782.
[23] Sulimov V.D. Local smoothing approximation in hybrid algorithm of optimization of
hydromechanical systems.
Vest. MGTU im. N.E. Baumana. Ser. Estestv. nauki
[Herald
of the Bauman MSTU. Ser. Natural Sc.], 2010, no. 3, pp. 3–14 (in Russ.).
[24] Izmailov A.F., Solodov M.V. Chislennye metody optimizatsii [Numerical
optimization procedure ]. Moscow, Fizmatlit Publ., 2005. 304 p.
[25] McKinnon K.I.M. Convergence of the Nelder –Mead simplex method to a
nonstationary point.
SIAM J. Contr. Optim.
, 1999, vol. 9, no. 2, pp. 148–158.
[26] Price C.J., Coope I.D., Byatt D. A convergent variant of the Nelder-Mead algorithm.
J. Optim. Theory Appl.
, 2002, vol. 113, no. 1, pp. 5–19.
[27] Xiao H.F., Duan J.A. Multi-direction-based Nelder - Mead method.
Optim.: A J.
Math. Progr. Oper. Res.
, 2012, pp. 1–22.
[28] Lera D., Sergeev Ya.D. Lipschitz and Hцlder global optimization using space-filling
curves
App. Num. Math.
, 2010, vol. 60, no. 1, pp. 115–129.
62
ISSN 1812-3368. Вестник МГТУ им. Н.Э. Баумана. Сер. “Естественные науки”. 2014. № 4
1...,6,7,8,9,10,11,12,13,14,15 17
Powered by FlippingBook