Гибридные алгоритмы вычислительной диагностики гидромеханических систем - page 15

20.
Voglis C.
,
Parsopoulos K.E.
,
Papageorgiou D.G.
,
Lagaris I.E.
,
Vrahatis M.N.
MEMPSODE: A global optimization software based on hybridization of population-
based algorithms and local searches // Computer Physics Communications. 2012.
Vol. 183. No. 2. P. 1139–1154.
21.
Yuan G.
,
Wei Z.
,
Li G.
A modified Polak – Ribi`are – Polyak conjugate gradient
algorithm for nonsmooth convex programs // Journal of Computational and Applied
Mathematics. 2014. // Vol. 255. P. 86–96.
22.
Bagirov A.M.
,
Al Nuaimat A.
,
Sultanova N.
Hyperbolic smoothing function method
for minimax problems // Optimization: A Journal of Mathematical Programming and
Operations Research. 2013. Vol. 62. No. 6. P. 759–782.
23.
Сулимов В.Д.
Локальная сглаживающая аппроксимация в гибридном алгоритме
оптимизации гидромеханических систем // Вестник МГТУ им. Н.Э. Баумана.
Сер. Естественные науки. 2010. № 3. С. 3–14.
24.
Измаилов А.Ф.
,
Солодов М.В.
Численные методы оптимизации. М.: Физматлит,
2005. 304 с.
25.
McKinnon K.I.M.
Convergence of the Nelder –Mead simplex method to a non-
stationary point // SIAM Journal of Control and Optimization. 1999. Vol. 9. No. 2.
P. 148–158.
26.
Price C.J.
,
Coope I.D.
,
Byatt D.
A convergent variant of the Nelder –Mead algorithm
// Journal of Optimization Theory and Applications. 2002. Vol. 113. No. 1. P. 5–19.
27.
Xiao H.F.
,
Duan J.A.
Multi-direction-based Nelder –Mead method // Optimization:
A Journal of Mathematical Programming and Operations Research. 2012. P. 1–22.
28.
Lera D.
,
Sergeev Ya.D.
Lipschitz and Hцlder global optimization using space-filling
curves // Applied Numerical Mathematics. 2010. Vol. 60. No. 1. P. 115–129.
29.
Сулимов В.Д.
Гибридные алгоритмы оптимизации динамических характери-
стик гидромеханических систем // Вестник Нижегородского университета
им. Н.И. Лобачевского. 2011. № 4 (2). С. 324–326.
30.
Sulimov V.D.
,
Shkapov P.M.
Application of hybrid algorithms to computational
diagnostic problems for hydromechanical systems // Journal of Mechanics
Engineering and Automation. 2012. Vol. 2. No. 12. P. 734–741.
REFERENCES
[1] Pulecchi T., Casella F., Lovera M. Object-oriented modelling for spacecraft dynamics:
Tools and applications.
Simulation Modelling and Theory
, 2010, vol. 18, no. 1, pp. 63–
86. DOI: 10.1016/j.simpat.2009.09.010
[2] Gao C., Zhao Z., Duan G. Robust actuator fault diagnosis scheme for satellite attitude
control systems.
J. Franklin Inst.
, 2013, vol. 350, no. 9, pp. 2560–2580.
[3] Ma J., Jiang J. Applications of fault detection and diagnosis methods in nuclear
power plants: A review.
Progress in Nuclear Energy.
, 2011, vol. 53, pp. 255–266.
[4] Shang J.S. Simulating plasma microwave diagnostics.
J. Sc. Computing
, 2006,
vol. 28, no. 213, pp. 507–532.
[5] Lavrent’ev M.M., Zharinov S.Yu., Zerkal’ S.M., Soppa M.S Computational
diagnostics of surface characteristics of long cylindrical objects by methods of active
location
Sib. Zh. Ind. Mat.
[J. Appl. Ind. Math.], 2002, vol. V, no. 1 (9), pp. 105–113
(in Russ.).
[6] Goncharsky A.V., Romanov S.Y.
Zh. Vychisl. Mat. Mat. Fiz.
[Comput. Math. Math.
Phys.], 2012, vol. 52, no. 2, pp. 263–269 (in Russ.).
[7] Goncharsky A.V., Romanov S.Y. Supercomputer technologies in inverse problems
of ultrasound tomography.
Inverse Problems.
2013, vol. 29, no. 7, pp. 1–22.
[8] Wang Y., Yagola A.G., Yang C. Optimization and regularization for computational
inverse problems and applications. Berlin, Heidelberg: Springer Verlag, 2010. XVIII.
351 p.
ISSN 1812-3368. Вестник МГТУ им. Н.Э. Баумана. Сер. “Естественные науки”. 2014. № 4
61
1...,5,6,7,8,9,10,11,12,13,14 16,17
Powered by FlippingBook