Компьютерное моделирование динамики формирования дифракционной картины от одиночной щели с использованием генератора псевдослучайных чисел - page 15

14.
Большев Л.Н.
,
Смирнов Н.В.
Таблицы математической статистики. М.: Наука,
1983. 416 с.
REFERENCES
[1] Jonsson C. Electron diffraction at multiple slits.
Am. J. Phys.
, 1974, vol. 42, no. 1,
pp. 4–11. DOI: dx.doi.org/10.1119/1.1987592
[2] Crease R.P. The most Beautiful Experiment.
Physics World
, 2002, vol. 15, no. 9,
pp. 19–20.
[3] Merly P.G., Missiroli G.F., Pozzi G. On the statistical aspect of electron
interference phenomena.
Am. J. Phys.
, 1974, vol. 44, no. 3, pp. 306–307. DOI:
dx.doi.org/10.1119/1.10184
[4] Tonomura A., Endo J., Matsuda T., Kawasaki T., Ezawa H. Demonstration of single-
electron buildup of an interference pattern.
Am. J. Phys.
, 1989, vol. 57, no. 2, pp. 117–
120. DOI: dx.doi.org/10.1119/1.16104
[5] Garcia N., Saveliev I.G., Sharonov M. Time-resolved diffraction and interference:
Young’s interference with photons of different energy as revealed by time resolution.
Roy. Soc. of London Phil. Tr. A
, 2002, vol. 360, no. 5, pp. 1039–1059. DOI:
10.1098/rsta.2001.0980
[6] Dimitrova T.L., Weis A. The wave-particle duality of light: a demonstration
experiment.
Am. J. Phys.
, 2008, vol. 76, no. 2, pp. 137–142. DOI:
dx.doi.org/10.1119/1.2815364
[7] Juffmann T., Milic A., Mullneritsch M. Real-time single-molecule imaging of
quantum interference.
Nature Nanotech.
, 2012, vol. 7, no. 5, pp. 297–300. DOI:
10.1038/nnano.2012.34
[8] Landau L.D., Lifshits E.M. Teoreticheskaja fizika. V 10 t. T. 3. Kvantovaya
mekhanika [Theoretical physics. Ten-volume set. Vol. 3. Quantum Mechanics].
Moscow, Fizmatlit Publ., 2004. 800 p. (Eng. Ed.: Landau L.D., Lifshitz E.M.
Quantum Mechanics: Non-Relativistic Theory. Vol. 3. Course of Theoretical Physics
S. 2nd Ed. Oxford, Pergamon Press, 1965. 615 p.).
[9] Landau L.D., Lifshits E.M. Teoreticheskaja fizika. V 10 t. T. 2. Teoriya polya
[Theoretical physics. Ten-volume set. Vol. 3. The Classical Theory of Fields].
Moscow, Fizmatlit Publ., 2003. 536 p. (Eng. Ed.: Landau L.D., Lifshitz E.M. The
Classical Theory of Fields. Vol. 2. Course of Theoretical Physics S. 2nd ed. Oxford,
Pergamon Press, 1959. 387 p.).
[10] Matveev A.N. Optika [The optics]. Мoscow, Vysshaya Shkola Publ., 1985. 351 p.
[11] Law A. M., Kelton W. D. Simulation modeling and analysis. 3rd ed. McGraw
Hill Higher Education, 2000. 784 p. (Russ. Ed.: Kel’ton V., Lou A. Imitatsionnoe
modelirovanie. Klassika CS. SPb, Piter Publ., 2004. 848 p.).
[12] Abramowitz M, Stegun I. Handbook of mathematical functions with formulas,
graphs, and mathematical tables. The U.S. National Bureau of Standards, 1964.
1046 p. (Russ. Ed.: Abramovits M., Stigan I. Spravochnik po spetsial’nym
funktsiyam. Moscow, Nauka Publ., 1979. 732 p.).
[13] Rekomendatsii po standartizatsii RF R 50.1.037-2002. Prikladnaya statistika.
Pravila proverki soglasiya opytnogo raspredeleniya s teoreticheskim. Ch. II.
Neparametricheskie kriterii. [Recommendations for standardization RF Р 50.1.037-
2002. Applied statistics. Rules of check of experimental and theoretical distribution
of the consent. Part II. Nonparametric goodness-of-fit test.]. Moscow, Izd. Standartov
Publ., 2002. 64 p.
[14] Bol’shev L.N., Smirnov N.V. Tablitsy matematicheskoy statistiki [Tables of
Mathematical Statistics]. Moscow, Nauka Publ., 1983. 416 p.
Статья поступила в редакцию 13.12.2013
ISSN 1812-3368. Вестник МГТУ им. Н.Э. Баумана. Сер. “Естественные науки”. 2014. № 6
51
1...,5,6,7,8,9,10,11,12,13,14 16
Powered by FlippingBook