Расчет магнитных свойств однослойных углеродных нанотрубок…
ISSN 1812-3368. Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки. 2016. № 4
63
CALCULATIONOF THE MAGNETIC PROPERTIES OF SINGLE-WALLED
CARBONNANOTUBES IN THE FRAMEWORK OF DENSITY FUNCTIONAL
THEORY
O.S. Erkovich
erkovitch@mail.ruP.A. Ivliev
ivliev-pavel@mail.ruBauman Moscow State Technical University, Moscow, Russian Federation
Abstract
Keywords
The study tested radial angular distribution of electron densi-
ty of a single-walled metal type carbon nanotube. Within the
research we took into account the electron-electron interac-
tion in the approximation of a right circular cylinder having a
constant electrostatic potential. The system under considera-
tion is a cylindrically symmetric potential well with a final
height of the wall. In the framework of Kohn — Sham theory
and Hartree — Fock self-consistent field approximation we
obtained radial and angular distribution of the electron densi-
ty
( )
n r
in such structures. We presented graphically the
radial component of the electron density and concluded that
nature of the electron density distribution does not depend
on the nanotube radius. Relying on the obtained radial distri-
bution we made a conclusion about the nature of the electri-
cal conductivity of nanotubes, as well as an estimate of their
electrical resistance. Taking into consideration the nature of
the angular distribution we calculated the magnetic field
induction of single-walled carbon nanotubes
Electron density, carbon nano-
tubes, angular distribution, radi-
al distribution, magnetic field of
nanotube
REFERENCES
[1] Gao B., Chen Y.F., Fuhrer M.S., Glattli D.C., Bachtold A. Four-point resistance of indivi-
dual single-wall carbon nanotubes.
Physical Review Letters
, 2005, no. 95, pp. 1–4.
[2] Vintaykin B.E. Fizika tverdogo tela [Solid state physics]. Moscow MGTU im. N.E. Bauma-
na Publ., 2006. 360 p.
[3] Hartree D.R. The calculation of atomic structures. N.Y., Wiley; London, Chapman and
Hall, 1957.
[4] Fock V.A. Fundamentals of quantum mechanics. Moscow, Mir Publ., 1978. 367 p.
[5] Sarry A.M., Sarry M.F. On the density functional theory.
Physics of the Solid State
, 2012,
vol. 54, no. 6, p. 1315. DOI: 10.1134/S1063783412060297
[6] Kohn W. Electronic structure of matter — wave functions and density functionals.
Rev.
Mod. Phys
., 1999, vol. 71, iss. 5, pp. 1253–1266.
Available at:
http://dx.doi.org/10.1103/RevModPhys.71.1253[7] Thomas L.H. The calculation of atomic fields.
Proc. Cambridge Philos. Soc
., 1927, vol. 23,
no. 5, pp. 542–548.
[8] Prut V.V. Quasiclassical equation of state.
J. Tech. Phys
., 2004, vol. 74, no. 12, pp. 10–20
(in Russ.).