Previous Page  8 / 9 Next Page
Information
Show Menu
Previous Page 8 / 9 Next Page
Page Background

Расчет магнитных свойств однослойных углеродных нанотрубок…

ISSN 1812-3368. Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки. 2016. № 4

63

CALCULATIONOF THE MAGNETIC PROPERTIES OF SINGLE-WALLED

CARBONNANOTUBES IN THE FRAMEWORK OF DENSITY FUNCTIONAL

THEORY

O.S. Erkovich

erkovitch@mail.ru

P.A. Ivliev

ivliev-pavel@mail.ru

Bauman Moscow State Technical University, Moscow, Russian Federation

Abstract

Keywords

The study tested radial angular distribution of electron densi-

ty of a single-walled metal type carbon nanotube. Within the

research we took into account the electron-electron interac-

tion in the approximation of a right circular cylinder having a

constant electrostatic potential. The system under considera-

tion is a cylindrically symmetric potential well with a final

height of the wall. In the framework of Kohn — Sham theory

and Hartree — Fock self-consistent field approximation we

obtained radial and angular distribution of the electron densi-

ty

( )

n r

in such structures. We presented graphically the

radial component of the electron density and concluded that

nature of the electron density distribution does not depend

on the nanotube radius. Relying on the obtained radial distri-

bution we made a conclusion about the nature of the electri-

cal conductivity of nanotubes, as well as an estimate of their

electrical resistance. Taking into consideration the nature of

the angular distribution we calculated the magnetic field

induction of single-walled carbon nanotubes

Electron density, carbon nano-

tubes, angular distribution, radi-

al distribution, magnetic field of

nanotube

REFERENCES

[1] Gao B., Chen Y.F., Fuhrer M.S., Glattli D.C., Bachtold A. Four-point resistance of indivi-

dual single-wall carbon nanotubes.

Physical Review Letters

, 2005, no. 95, pp. 1–4.

[2] Vintaykin B.E. Fizika tverdogo tela [Solid state physics]. Moscow MGTU im. N.E. Bauma-

na Publ., 2006. 360 p.

[3] Hartree D.R. The calculation of atomic structures. N.Y., Wiley; London, Chapman and

Hall, 1957.

[4] Fock V.A. Fundamentals of quantum mechanics. Moscow, Mir Publ., 1978. 367 p.

[5] Sarry A.M., Sarry M.F. On the density functional theory.

Physics of the Solid State

, 2012,

vol. 54, no. 6, p. 1315. DOI: 10.1134/S1063783412060297

[6] Kohn W. Electronic structure of matter — wave functions and density functionals.

Rev.

Mod. Phys

., 1999, vol. 71, iss. 5, pp. 1253–1266.

Available at:

http://dx.doi.org/10.1103/RevModPhys.71.1253

[7] Thomas L.H. The calculation of atomic fields.

Proc. Cambridge Philos. Soc

., 1927, vol. 23,

no. 5, pp. 542–548.

[8] Prut V.V. Quasiclassical equation of state.

J. Tech. Phys

., 2004, vol. 74, no. 12, pp. 10–20

(in Russ.).