Оценки упругих характеристик композита с короткими изотропными волокнами
ISSN 1812-3368. Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки. 2017. № 1
13
analysis of the mathematical model and defined the
boundaries within which the influence of the fiber
elongation is significant. The calculated dependences
obtained made it possible to predict elastic properties of
the composite reinforced with short fibers (including the
form of nanostructured elements, for example carbon
nanotubes)
REFERENCES
[1] Handbook of composites. Ed. by G. Lubin. N.Y., Van Nostrand Reinhold, 1982. 786 p.
[2] Vasil'ev V.V., Tarnopol'skiy Yu.M., ed. Kompozitsionnye materialy. Spravochnik [Hand-
book of composites]. Moscow, Mashinostroenie Publ., 1990. 512 p.
[3] Komkov M.A., Tarasov V.A. Tekhnologiya namotki kompozitnykh konstruktsiy raket i
sredstv porazheniya [Wound composite structures technology and missile weapons]. Moscow,
MGTU im. N.E. Baumana Publ., 2015. 432 p.
[4] Kalinchev V.A., Yagodnikov D.A. Tekhnologiya proizvodstva raketnykh dvigateley tver-
dogo topliva [Production technology of solid-propellant rocket engine]. Moscow, MGTU
im. N.E. Baumana Publ., 2011. 688 p.
[5] Shermergor T.D. Teoriya uprugosti mikroneodnorodnykh sred [Theory of elasticity
of micrononuniform environments]. Moscow, Nauka Publ., 1977. 400 p.
[6] Brautman L., Kroc R., Sendetsky J., eds. Composite materials. In 8 volums. Vol. 2. Mecha-
nics of composite materials. N.Y., 1975.
[7] Christensen R.M. Mechanics of composite materials. N.Y., Wiley-Interscience Publ., 1979.
348 p.
[8] Vanin G.A. Mikromekhanika kompozitsionnykh materialov [Micromechanics of compo-
site materials]. Kiev, Naukova Dumka Publ., 1985. 304 p.
[9] Khoroshun L.P. Mathematical models and methods of the mechanics of stochastic compo-
sites.
International Applied Mechanics
, 2000, vol. 36, no. 10, pp. 1284–1316.
[10] Kats E.A. Fullereny, uglerodnye nanotrubki i nanoklastery. Rodoslovnaya form i idey
[Fullerenes, carbon nanotubes and nanoclusters. Pedigree of forms and ideas]. Moscow,
LKI Publ., 2008. 296 p.
[11] Kormilitsyn O.P. Mekhanika materialov i struktur nano- i mikrotekhniki [Mechanics of
materials and nano- and microtechnology structures]
.
Moscow, Akademiya Publ., 2008. 224 p.
[12] Eshelby J.D., Seitz F., Turnbul D., eds. The continuum theory of lattice defects. In Collec-
ted Works of J.D. Eshelby "Progress in solid state physics". N.Y., Academic Press Publ., 1956,
vol. 3, pp. 79–303.
[13] Zarubin V.S., Kuvyrkin G.N., Savel'eva
I.Yu.Comparative analysis estimates of elastic
moduli for composite. Isotropic spherical inclusions.
Vestn. Mosk. Gos. Tekh. Univ.
im. N.E. Baumana, Mashinostr.
[Herald of the Bauman Moscow State Tech. Univ., Mech.
Eng.], 2014, no. 5, pp. 53–69 (in Russ.). DOI: 10.18698/0236-3941-2014-5-53-69
[14] Zarubin V.S. Prikladnye zadachi termoprochnosti elementov konstruktsiy [Applied prob-
lems of thermal strength of structural elements]. Moscow, Mashinostroenie Publ., 1985. 296 p.
[15] Zarubin V.S., Kuvyrkin G.N., Savel'eva
I.Yu. Comparative analysis modulus elasticity
estimates for composite anisotropic spherical inclusions.
Vestn. Mosk. Gos. Tekh. Univ.