Пространственное нелинейное поглощение альфвеновской волны диссипативной плазмой
ISSN 1812-3368. Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки. 2017. № 2
59
[5] Dnestrovskiy Yu.N., Kostomarov D.P. Matematicheskoe modelirovanie plazmy [Plasma
mathematic simulation]. Moscow, Nauka Publ., 1993. 336 p.
[6] Gavrikov M.B. Osnovnye uravneniya dvukhzhidkostnoy magnitnoy gidrodinamiki.
Ch. I. Preprint № 59 [The basic equations for two-fluid electromagnetic hydrodynamics.
Part I. Preprint no. 59]. Moscow, Inst. Appl. Math. Publ., 2006. 28 p. (in Russ.). Available at:
http://www.keldysh.ru/papers/2006/prep59/prep2006_59.html(accessed 15.06.2016).
[7] Gavrikov M.B., Taiurskii A.A. Electron inertia effect on incompressible plasma flow in a planar
channel.
J. Plasma Phys
., 2015, vol. 81, no. 5, pp. 495810506. DOI: 10.1017/S0022377815000720
Available at:
https://www.cambridge.orcore/journals/journal-of-plasma-physics/article/div-classtitleelectron-inertia-effect-on-incompressible-plasma-flow-in-a-planar-channeldiv/
D2675017840F927236881A2CDF592F10
[8] Gavrikov M.B., Tayurskiy A.A. The influence of electron inertia on the incompressible plasma
flow in a planar channel.
Matematicheskoe modelirovanie
, 2013, vol. 25, no. 8, pp. 65–79.
[9] Landau L.D., Lifshits E.M. Teoreticheskaya fizika. T. 6. Gidrodinamika [Theoretical
physics. Vol. 6. Hydrodynamics]. Moscow, Nauka Publ., 1986. 736 p.
[10]
Spitzer L. Physics of fully ionized gases. New York–London, John Wiley and Sons, 1962.
[11]
Chapman S., Cowling T.G. The mathematical theory of non-uniform gases. Cambridge,
Univ. Press, 1939.
[12]
Landau L.D. Kinetic equation in case of Coulomb interaction.
ZhETF
, 1937, vol. 7, p. 203
(in Russ.).
[13] Grim G. Protsessy izlucheniya v plazme. Sbornik: Osnovy fiziki plazmy. T. 1 [Emission
processes in plasma. In: Fundamentals of plasma physics. Vol. 1]. Moscow, Energoatomizdat
Publ., 1983. 641 p. (in Russ.).
[14]
Chukbar K.V. Lektsii po yavleniyam perenosa v plazme [Lectures on transport phenome-
non in plasma]. Dolgoprudnyy, Intellekt Publ. House, 2008. 256 p.
[15] Kulikovskiy A.G., Lyubimov G.A. Magnitnaya gidrodinamika [Magnetic hydrodyna-
mics]. Moscow, Logos Publ., 2005. 328 p.
[16] Allen C.W. Astrophysical quantities. The Athlone Press, 1973.
[17] Gray D.F. The observation and analysis of stellar photospheres. New York, Wiley, 1976.
Gavrikov M.B.
— Cand. Sc. (Phys.-Math.), Senior Research Scientist of Keldysh Institute of
Applied Mathematics, Russian Academy of Sciences (Miusskaya ploshchad' 4, Moscow, 125047
Russian Federation), Assoc. Professor of Applied Mathematics Department, Bauman Moscow State
Technical University (2-ya Baumanskaya ul. 5, Moscow, 105005 Russian Federation).
Tayurskiy A.A.
— Cand. Sc. (Phys.-Math.), Research Scientist of Keldysh Institute of Applied
Mathematics (Miusskaya ploshchad' 4, Moscow, 125047 Russian Federation).
Please cite this article in English as:
Gavrikov M.B., Tayurskiy A.A. Spatial Nonlinear Alfven Wave Absorption by Dissipative Plasma.
Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Estestv. Nauki
[Herald of the Bauman Moscow
State Tech. Univ., Nat. Sci.], 2017, no. 2, pp. 40–59. DOI: 10.18698/1812-3368-2017-2-40-59