Previous Page  4 / 13 Next Page
Information
Show Menu
Previous Page 4 / 13 Next Page
Page Background

Управление формой пучка технологического ионного источника…

ISSN 1812-3368. Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки. 2017. № 3

27

= −

( ).

y

z

dVm qB x

dx

(3)

Из выражения (3) и первого уравнения системы (1), полагая величину

y

V

малой по сравнению с

,

x

V

запишем выражения для проекций скорости:

=

= −

0

0

1

2

2 ( )

;

( ) ,

x

x

x

y

z

x

x

q

q

V

E x dx V

B x dx

m

m

(4)

где

0

x

— координата места появления иона.

Для траектории иона справедливо равенство

= = α

.

y

x

V dy

dx V

(5)

Здесь

α

— угол между образующей

x

ускорительного канала и траекторией

иона.

Интегрируя выражение (5), с учетом (4) для азимутального отклонения

ионов

y

(

x

) получаем

 

=

=

 

 

0

0

0

0

1

2

1

2

( )

( )

.

2

( )

x

z

x

x

y

x

x x

x x

x

B x dx

V

q

y x

dx

dx

V

m

E x dx

(6)

Из выражения (6) следует условие для сведения ионного пучка в точку фо-

кусировки (см. рис. 1):

=

( ) 0.

y f

(7)

Согласно условию (7), на отклонение ионов

y

(

x

) влияет не только распреде-

ление магнитного поля в рассматриваемой области, но и распределение элек-

трического поля в ускорительном канале. При этом необходимо знать коорди-

нату места появления иона

0

x

. В ускорителях с анодным слоем этих параметры

неизвестны, трудно поддаются оценке и экспериментальному определению.

При малых углах отклонения иона

α

и быстром спаде магнитного поля, что

обеспечивается малым расстоянием между основной и компенсирующей магнит-

ными системами

,

максимальное отклонение иона от заданной траектории

h

max

не-

велико. В этом случае (7) можно заменить требованием

α =

0 (см. рис. 1) и для про-

ектных расчетов использовать не отклонение иона, а угол отклонения [15]

α = = = −

ε

0

1

2

( ) ,

2

x

y

z

x

i

x

V dy

q

B x dx

dx V m

(8)

где

ε

i

— энергия иона,

ε =

0

( ) .

x

i

x

qE x dx