16.
Малинин Н.Н.
Прикладная теория пластичности и ползучести. М.: Машино-
строение, 1975. 400 с.
17.
Математическое
моделирование разрушения хрупкого материала под действи-
ем тепловых нагрузок / М.П. Галанин и др. // Препринт ИПМ им. М.В. Келдыша
РАН. 2013. № 100. 36 с.
18.
SCDAP/RELAP5/MOD3.1 Code Manual
. Vol. IV. MATPRO — A Library of
Materials. Properties for Light-Water-Reactor Accident Analysis. Idaho, 1993. 681 p.
19.
Тимошенко С.П.
,
Гудьер Дж.
Теория упругости. М.: Наука, 1975. 576 с.
REFERENCES
[1] Feodos’ev V.I. Soprotivlenie materialov [The structural resistance]. Moscow, MGTU
im. N.E. Baumana Publ., 1999. 592 p.
[2] Kachanov L.M. Osnovy mekhaniki razrusheniya [Fundamentals of fracture
mechanics]. Moscow, Nauka Publ., 1974. 312 p.
[3] Besson J., Cailletaud G., Chaboche J.-L., Forest S., Bletry M. Non-linear mechanics
of materials. Springer, 2010. 450 p.
[4] Lemaitre J. A course on damage mechanics. Springer, 1996. 228 p.
[5] Dahlblom O., Ottosen N.S. Smeared crack analysis of concrete using a nonlinear
fracture model.
Proc. "Fracture Mechanics of Concrete: Nordiс Seminar Held at
Division of Building Materials".
Sweden, Lund Institute of technology, November 6,
1986, pp. 31–46.
[6] Hillerborg A. Application of the fictitious crack model to different types of materials.
Int. J. Fracture
, 1991, no. 51, pp. 95–102.
[7] Frost Brian R. T. Nuclear fuel elements: design, fabrication, and performance.
Pergamon Press, 1982. 275 p. (Russ. Ed.: Frost B. TVELy yadernykh reaktorov.
Per. s angl., Reshetnikov F.G. Moscow, Energoatomizdat Publ., 1982. 248 p.).
[8] Marchal N., Campos C., Garnier C. Finite element simulation of Pellet-Cladding
Interaction (PCI) in nuclear fuel rod.
Computational Materials Science
, 2009, no. 45,
pp. 821–826.
[9] Semerikova M.A. Mathematical simulation of fracture of brittle material in
the coupled problem for thermoelasticity.
Vestn. Mosk. Gos. Tekh. Univ.
im. N.E. Baumana, Estestv. Nauki., Spetsvyp. “Mathematical simulation in the
technique”
[Herald of the Bauman Moscow State Tech. Univ., Nat. Sci., Spec. Issue
“Mathematical Simulation in Technique”], 2012, pp. 187–196 (in Russ.).
[10] Semerikova M.A. Mathematical simulation of brittle material under the thermal loads.
El. Zhur. “Molodezhnyy nauchno-tekhnicheskiy vestnik” MGTU im. N.E. Baumana
[El. J. “Youth Sci. & Techn. Herald” of BMSTU], 2013, no. 3 (in Russ.). Available
at:
(accessed 05.05.2013).
[11] Galanin M.P., Gorbunov-Posadov M.M., Ermakov A.V., Lukin V.V., Rodin A.S.,
Shapovalov K.L. Arkhitektura programmnoy platformy soprovozhdeniya
vychislitel’nogo eksperimenta Temetos [Architecture of the software environment
for numerical experiments Themetos]. Moscow, Keldysh Inst. Appl. Math.,
preprint no. 99, IPM im. M.V. Keldysha Publ., 2013. 23 p. Available at:
(accessed 18.04.2014).
[12] Zarubin V.S., Kuvyrkin G.N. Matematicheskie modeli termomekhaniki
[Mathematical models of thermomechanics]. Moscow, Fizmatlit Publ., 2002.
168 p.
[13] Bathe K.-J. Finite element procedures. Prentice-Hall, 1996. 1037 p.
[14] Zienkiewicz O. The finite element method in engineering science. London, McGraw-
Hill, 1971. 521 p. (Russ. Ed.: Zenkevich O. Metod konechnykh elementov v tekhnike.
Moscow, Mir Publ., 1975. 543 p.).
116
ISSN 1812-3368. Вестник МГТУ им. Н.Э. Баумана. Сер. “Естественные науки”. 2014. № 6