Previous Page  19 / 21 Next Page
Information
Show Menu
Previous Page 19 / 21 Next Page
Page Background

В.Д. Сулимов, П.М. Шкапов, А.В. Сулимов

64

ISSN 1812-3368. Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки. 2016. № 5

OPTIMIZATION OF SINGULAR VALUES OF PARAMETER

DEPENDENT MATRICES USING HYBRID ALGORITHMS

V.D. Sulimov

1

P.M. Shkapov

1

spm@bmstu.ru

A.V. Sulimov

2

1

Bauman Moscow State Technical University, Moscow, Russian Federation

2

Lomonosov Moscow State University, Branch, Sevastopol,

Russian Federation

Abstract

Keywords

This article considers extremal problems for singular spec-

trum components of real-valued matrices depending on

parameters. Criterion functions are supposed to be conti-

nuous, Lipschitzian, multiextremal and not necessarily dif-

ferentiable. While searching for global solutions we used new

hybrid algorithms that combine a stochastic algorithm for

scanning a search space and deterministic methods for local

search. The first hybrid algorithm determines local solutions

using the linearization method with smoothing approxima-

tions. The second algorithm does it by using the modified

space-filling curve method. Our work provides numerical

examples

Singular value, criterion function,

Lipschitzian constant, smoothing

approximation, Peano curve,

global optimization, Metropolis

algorithm, hybrid algorithm

REFERENCES

[1] Nicoud F., Toda H.B., Cabrit O., Bose S., Lee J

.

Using singular values to build a subgrid-

scale model for large eddy simulations.

Physics of Fluids

, 2011, vol. 23, no. 8, pp. 085106-1–

085106-12.

[2] Vaidya P.G., Anand S.P.S., Nagaraj N. A nonlinear generalization of singular value decom-

position and its applications to mathematical modelling and chaotic cryptanalysis.

Acta Appli-

candae Mathematicae

, 2010, vol. 112, no. 2, pp. 205–221.

[3] Danforth C.M., Kalnay E. Using singular value decomposition to parametrize state-

dependent model errors.

Journal of the Atmospheric Sciences

, 2008, vol. 65, no. 4, pp. 1467–

1478.

[4] Dax A. From eigenvalues to singular values: a review.

Advances in Pure Mathematics

, 2013,

vol. 3, pp. 8–24.

[5] Dieci L., Elia C

.

The singular value decomposition to approximate spectra of dynamical

systems. Theoretical aspects.

Journal of Differential Equations

, 2006, vol. 230, no. 2,

pp. 502–531.

[6] Gu M. Subspace iteration randomization and singular value problems.

SIAM Journal

on Scientific Computing

, 2015, vol. 37, no. 3, pp. A1139–A1173.

[7] Polyakova A

.

Reconstruction of potential part of 3D vector field by using singular value

decomposition.

Journal of Physics: Conference Series

, 2013, vol. 410, p. 012015.

DOI: 10.1088/1742-6596/410/1/012015