3. B e r t o l a z z i E., M a n z i n i G. A cell-centered second-order accurate finite
volume method for convection-diffusion problems on unstructured meshes //
Mathematical Models and Methods in Applied Sciences. – 2004. – 14(8). – P. 1235–
1260.
4. P e r i c M. Simulation of flows in complex geometries: new meshing and solution
methods / NAFEMS Seminar; Simulation of Complex Flows (CFD)-Applications
and Trends. Niedernhausen/Wiesbaden, Germany, 2004.
5. B a l i g a B. R., P a t a n k a r S. V. A new finite-element formulation for
convection-diffusion problems // Numerical Heat Transfer. – 1980. – No. 3. – P. 393–
409.
6. P r a k a s h C, P a t a n k a r S. V. A control volume-based finite-element
method for solving the Navier-Stokes equations using equal-order velocity-pressure
interpolation // Numerical Heat Transfer. – 1985. – No. 8. P. 259–280.
7. R e y e s M., R i n c o n J., D a m i a J. Simulation of turbulent flow in irregular
geometries using a control-volume finite-element method // Numerical Heat Transfer.
– 2001. Part B(39). – P. 79–89.
8. T a y l o r G. A., B a i l e C., C r o s s M. A vertex-based finite volume method
applied to non-linear material problems in computational solid mechanics //
International Journal for Numerical Methods in Engineering. – 2003. – No. 56. –
P. 507–529.
9. M c B r i d e D., C r o f t T. N., C r o s s M. A coupled finite volume method for
the solution of flow processes on complex geometries // lnt. J. Numer. Meth. Fluids.
– 2007. No. 53. – P. 81–104.
10. F o r s y t h P. A. A control-volume, finite-element method for local mesh refinement
in thermal reservoir simulation // SPERE, (Nov. 1990). – P. 561–566.
11. F u n g L. S. K., H i e b e r t A. D., N g h l e m L. X. Reservoir simulation with
a control-volume finite element method // SPERE (Aug. 1992). – P. 349–357.
12. E y m a r d R., S o n i e r F. Mathematical and Numerical properties of control-
volume, finite-element scheme for reservoir simulation // SPERE (Nov. 1994). –
P. 283–289.
13. V e r m a S., A z i z K. A control volume scheme for flexible grids in reservoir
simulation // Paper SPE 37999 presented at Reservoir Simulation Symposium. –
Dallas, June 8–11, 1997.
14. M a t t h a i S. K., M e z e n t s e v A., B e l a y n e h M. Control-volume finite-
element two-phase flow experiments with fractured rock represented by unstructured
3D hybrid meshes // Paper SPE 93341 presented at Reservoir Simulation Symposium.
– Houston, January 31–February 2, 2005.
15. C l a s s H., H e l m i g R., B a s t i a n P. Numerical simulation of non-isothermal
multiphase multicomponent processes in porous media. 1 An efficient solution
technique // Advances in Water Resources. – 2002. – No. 25. – P. 533–550.
16. H u b e r R., H e l m i g R. Node –centered finite volume discretizations for
the numerical simulation of multiphase flow in heterogeneous porous media //
Computational Geosciences. – 2000. – No. 4. – P. 141–164.
17. D u r l o f s k y L. J. A triangle based mixed finite-element-finite volume technique
for modeling two phase flow through porous media // Journal of Computational
Physics. – 1993. – No. 105. – P. 252–266.
18. G o t t a r d i G., D a l l ’ O l i o D. A control-volume finite-element model for
simulating oil-water reservoirs // J. Pet. Sci. Eng. – 1992. – No. 8. – P. 29–41.
19. C o r d a z z o J., M a l i s k a C. R., S i l v a A. F. C., H u r t a d o F. S.V. The
element-based finite volume method applied to petroleum reservoir simulation //
IBP29404 presented at Rio Oil & Gas Expo and Conference. – Rio de Janeiro,
October 4–7, 2004.
20. G e i g e r S., R o b e r t s S., M a t t h a i S., Z o p p o u C., B u r r y A. Combining
finite volume and finite element methods for efficient multiphase flow simulations in
highly heterogeneous and structurally complex geologic media // Geofluids. – 2004.
– No. 4. – P. 284–299.
ISSN 1812-3368. Вестник МГТУ им. Н.Э. Баумана. Сер. “Естественные науки”. 2008. № 4
87