REFERENCES
[1] Steynberg A.P., Dry M.E., Davis B.H., Breman B.B. Fischer – Tropsch Reactors.
Fischer – Tropsch Technology.
Studies in Surface Science and Catalysis
. Amsterdam:
Elsevier, 2004. vol. 152, pp. 64–195.
[2] Zel’dovich Ya.B., Barenblatt G.I., Librovich V.B., Makhviladze G.M.
Matematicheskaya teoriya goreniya i vzryva [Mathematical theory of combustion
and explosion]. Moscow, Nauka Publ., 1974. 432 p.
[3] Frank-Kamenetskiy D.A. Diffuziya i teploperedacha v khimicheskoy Kinetike
[Diffusion and heat transfer in chemical kinetics]. Moscow, Nauka Publ., 1987.
502 p.
[4] Merzhanov A.G., Rumanov E.N. Nonlinear effects in macroscopic kinetics.
Usp. Fiz.
Nauk
[Sov. Phys.-Usp.], 1987, vol. 151, no. 4, pp. 553–593.
[5] Khudyaev S.I. Porogovye yavleniya v nelineynykh uravneniyakh [Threshold
Phenomena in Nonlinear Equations]. Moscow, Fizmatlit Publ., 2003. 272 p.
[6] Varnatts Yu., Maas U., Dibbl R. Gorenie. (Russ. ed.: Varnatts Yu., Maas U., Dibbl R.
Fizicheskie i khimicheskie aspekty, modelirovanie, eksperimenty, obrazovanie
zagryaznyayushchikh veshchestv. Moscow, Fizmatlit Publ., 2003. 352 p.).
[7] Xofrstemaxe V., Air in R. Noise-tnduced transitions: Theory and applications in
physics, chemistry, biology. New York: Wiley, 1987. 400 p. (Russ. ed.: Moscow, Mir
Publ., 1987. 400 p.).
[8] Derevich I.V., Gromadskaya R.S. Rate of chemical reactions with regard to
temperature fluctuations.
Theoretical Foundations of Chemical Engineering
, 1997,
vol. 31, no. 4, pp. 392–397.
[9] Fedotov S. P., Tret’yakov M.V. Stationary regimes of heterogeneous chemical
reaction in the presence of ambient noise.
Khimicheskaya fizika
[Chemical Phys.].
1988, vol. 7, no. 11, pp. 1533–1537.
[10] Fedotov S.P., Tret’yakov M.V. Stochastic ignition particles.
Khimicheskaya fizika
[Chemical Physics], 1991, vol. 10, no. 2, pp. 238–241 (in Russ.).
[11] Medvedev V.G., Telegin V.G., Telegin G.G. Statistical analysis kinetics of adiabatic
thermal explosion.
Fizika goreniya i vzryva
[Combustion, Explosion, and Shock
Waves], 2009, vol. 45, no. 3, pp. 44–48 (in Russ.).
[12] Derevich I.V., Zaychik L.I. The equation for the probability density of the velocity
and temperature of the particles in a turbulent flow, the simulated Gaussian random
field. Prikladnaya matematika i mekhanika, 1990, vol. 54, pp. 767–774.
[13] Derevich I.V. Effect of temperature fluctuations of fluid on thermal stability of
particles with exothermic chemical reaction.
Int. J. Heat Mass Transfer
, 2010, vol. 53,
pp. 5920–5932.
[14] Derevich I.V. Influence of temperature fluctuations on the thermal explosion of single
particle.
Fizika goreniya i vzryva
[Physics of combustion and explosion], 2011,
vol. 47, no. 5, pp. 1–12.
[15] Derevich I.V. Temperature oscillation in a catalytic particle of Fischer – Tropsch
synthesis.
Int. J. Heat and Mass Transfer
, 2010, vol. 53, pp. 135–153.
[16]
Klyatskin V.I.
Stokhasticheskie uravneniya glazami fizika (osnovnye po- lozheniya,
tochnye rezul’taty i asimptoticheskie priblizheniya) [Stochastic equations by eyes
physics (basic framework, exact results and asymptotic approximations)]. Moscow,
Fizmatlit Publ., 2001. 528 p.
[17] Liang G.Y., Cao L., Wu .J. Approximate Fokker-Planck equation of system driven
by multiplicative colored noises with colored cross-correlation.
Physica A.
2004,
vol. 335. pp. 371–384.
[18] Gillespie D.T. Exact numerical simulation of the Ornstein - Uhlenbeck process and
its integral.
Physical Review E
. 1996, vol. 54, no. 2, pp. 2084–2091.
[19] Ilie S., Teslya A. An adaptive stepsize method for the chemical Langevin equation.
J. Chem. Phys.
, 2012, vol. 136, pp. 184101 (14).
ISSN 1812-3368. Вестник МГТУ им. Н.Э. Баумана. Сер. “Естественные науки”. 2014. № 2
19