Background Image
Previous Page  12 / 13 Next Page
Information
Show Menu
Previous Page 12 / 13 Next Page
Page Background

[11] Seeber G. Satellite geodesy: foundations, methods and applications. N.Y., Walter de

Gruyter, 2008. 609 p.

[12] El’yasberg P.E. Vvedenie v teoriyu poleta iskusstvennykh sputnikov Zemli

[Introduction to the Theory of an Artificial Satellite Flight]. Moscow, Knizhnyy

dom Librokom Publ., 2014. 544 p.

[13] Roy A.E. The Foundations of Astrodynamics. N.Y., Macmillan, 1965.

[14] Bettner M. Tools for satellite ground track and coverage analysis. Ohio, Air force

inst. of tech, Wright-Patterson AFB, 1995. 60 p.

[15] Michel C. Satellite orbits and missions. France, Springer-Verlag, 2005. 544 p.

[16] Sandip T.A., Shashikala A.G. Simplified orbit determination algorithm for low earth

orbit satellite using space borne GPS navigation sensor.

Artificial Satellite

, 2014,

vol. 49, no. 2, pp. 81–99.

[17] Kelso T.S. Orbital coordinate systems. Part III.

Satellite Times

, 1996, vol. 2, no. 3,

pp. 78–79.

[18] Tokareva O.S. Obrabotka i interpretatsiya dannykh distantsionnogo zondirovaniya

Zemli [Processing and Interpretation of Remote Earth Sensing Data]. Tomsk, TPU

Publ., 2010. 148 p.

[19] Anil K.M., Varsha A. Satellite technology, principles and applications. Manhattan,

John Wiley and Sons, 2011. 694 p.

[20] Fortescue P., Swinerd G., Stark J. Spacecraft system engineering. Manhattan, John

Wiley and Sons, 2011. 752 p.

[21] Panteleev V.L. Teoriya figury Zemli. Kurs lektsiy [Theory of the Earth Figure. Lecture

Course]. Moscow, 2000. URL:

http://www.astronet.ru/db/msg/1169819/node1.html

(accessed 05.03.2015).

[22] Hedgley D.R., Jr. An exact transformation from geocentric to geodetic coordinates

for nonzero altitudes. NASA TR R-458, March, 1976.

[23] Gerhard B. Methods of celestial mechanics. Vol. II: application to planetary systems,

geodynamics and satellite geodesy. Berlin, Heidelberg, Springer-Verlag, 2005. 448 p.

[24] Brian D.H., Daniel T.V. Essential MATLAB for engineers and scientists. Elsevier

Ltd, 2007. 428 p.

[25] Okhotsimskiy D.E., Sikharulidze Yu.G. Osnovy mekhaniki kosmicheskogo poleta

[Principles of Space Flight Mechanics]. Moscow, Nauka Publ., 1990. 445 p.

[26] Beletskiy V.V. Ocherki o dvizhenii kosmicheskikh tel. [Essays about the Movement

of Celestial Bodies]. Moscow, Knizhnyy dom Librokom Publ., 2013. 432 p.

Статья поступила в редакцию 17.03.2015

Кувыркин Георгий Николаевич — д-р техн. наук, профессор, заведующий кафедрой

“Прикладная математика”. Автор более 250 научных работ в области прикладной

математики и математического моделирования термомеханических процессов в ма-

териалах и элементах конструкций.

МГТУ им. Н.Э. Баумана, Российская Федерация, 105005, Москва, 2-я Бауманская ул.,

д. 5.

Kuvyrkin G.N. —

D.Sc.

(Eng.), Professor of Mathematics, Head of the Applied

Mathematics Department, Bauman Moscow State Technical University, author of over 250

research publications in the fields of applied mathematics and mathematical modelling of

thermal and mechanical processes in materials and constructions.

Bauman Moscow State Technical University, 2-ya Baumanskaya ul. 5, Moscow, 105005

Russian Federation.

ISSN 1812-3368. Вестник МГТУ им. Н.Э. Баумана. Сер. “Естественные науки”. 2015. № 4

113