Previous Page  12 / 14 Next Page
Information
Show Menu
Previous Page 12 / 14 Next Page
Page Background

12.

Renaut R.A.

,

Hnetynkova I.

,

Mead J

. Regularization parameter estimation for large

scale Tikhonov regularization using a priori information // Computational Statistics

& Data Analysis. 2010. Vol. 54. No. 12. P. 3430–3445.

13.

Oberkampf W.L.

,

Barone M.F

. Measures of agreement between computation and

experiment: Validation metrics // Journal of Computational Physics. 2006. Vol. 217.

No. 1. P. 5–36.

14.

MEMPSODE

: A global optimization software based on hybridization of

population-based algorithms and local searches / C. Voglis, K.E. Parsopoulos,

D.G. Papageorgiou, I.E. Lagaris, M.N. Vrahatis // Computer Physics

Communications. 2012. Vol. 183. No. 2. P. 1139–1154.

15.

Карпенко А.П.

Современные алгоритмы поисковой оптимизации. Алгоритмы,

вдохновленные природой. М.: Изд-во МГТУ им. Н.Э. Баумана, 2014. 446 с.

16.

Luz E.F.P.

,

Becceneri J.C.

,

De Campos Velho H.F.

A new multi-particle collision

algorithm for optimization in a high performance environment // Journal of

Computational Interdisciplinary Sciences. 2008. Vol. 1. P. 3–10.

17.

Bagirov A.M.

,

Al Nuaimat A.

,

Sultanova N.

Hyperbolic smoothing function method

for minimax problems // Optimization: A Journal of Mathematical Programming and

Operations Research. 2013. Vol. 62. No. 6. P. 759–782.

18.

Сулимов В.Д.

,

Шкапов П.М.

Гибридные алгоритмы вычислительной диагности-

ки гидромеханических систем // Вестник МГТУ им. Н.Э. Баумана. Сер. Есте-

ственные науки. 2014. № 4. С. 47–63.

19.

Lera D.

,

Sergeev Ya.D.

Deterministic global optimization using space-filling curves

and multiple estimates of Lipschitz and H¨older constants // Computations in Nonlinear

Science and Numerical Simulations. 2015. Vol. 23. No. 1–3. P. 326–342.

20.

Sulimov V.D.

,

Shkapov P.M.

Application of hybrid algorithms to computational

diagnostic problems for hydromechanical systems // Journal of Mechanics

Engineering and Automation. 2012. Vol. 2. No. 12. P. 734–741.

REFERENCES

[1] Pandoussis M.P. The canonical problem of the fluid-conveying pipe and radiation

of the knowledge gained to other dynamics problems across Applied Mechanics.

Journal of Sound and Vibration

, 2008, vol. 310, no. 3, pp. 462–492.

[2] Wang L., Gan J., Ni Q. Natural frequency analysis of fluid-conveying pipes in the

ADINA system.

Journal of Physics: Conference Series

, 2013, vol. 449, p. 012014.

DOI: 10.1088/1742-6596/448/1/012014

[3] Dai H.L., Wang L., Qian Q., Gan J. Vibration analysis of three-dimensional pipes

conveying fluid with consideration of steady combined force by transfer matrix

method.

Applied Mathematics and Computation

, 2012, vol. 219, no. 5, pp. 2453–

2464.

[4] Li S.-J., Liu G.-M., Kong W.-T. Vibration analysis of pipes conveying fluid by

transfer matrix method.

Nuclear Engineering and Design

, 2014, vol. 266, no. 1,

pp. 78–88.

[5] Xu M-R., Xu S.-P., Guo H.-Y. Determination of natural frequencies of fluid-

conveying pipes using homotopy perturbation method.

Computers and Mathematics

with Applications

, 2010, vol. 60, no. 3, pp. 520–527.

[6] Luczko J., Czerwinski A. Parametric vibrations of pipes induced by pulsating flows

in hydraulic systems.

Journal of Theoretical and Applied Mechanics

, 2014, vol. 52,

no. 3, pp. 719–730.

[7] Mironov M.A., Pyatakov P.A., Andreev A.A. Forced oscillations of a pipe conveying

a fluid flow.

Akusticheskiy zhurnal

[Acoustical Journal], 2010, vol. 56, no. 5, pp. 684–

692 (in Russ.).

[8] Dai H.L., Wang L., Ni Q. Dynamics of a fluid-conveying pipe of two different

materials.

International Journal of Engineering Science

, 2013, vol. 73, no. 1,

pp. 67–76.

76

ISSN 1812-3368. Вестник МГТУ им. Н.Э. Баумана. Сер. “Естественные науки”. 2016. № 2