12.
Renaut R.A.
,
Hnetynkova I.
,
Mead J
. Regularization parameter estimation for large
scale Tikhonov regularization using a priori information // Computational Statistics
& Data Analysis. 2010. Vol. 54. No. 12. P. 3430–3445.
13.
Oberkampf W.L.
,
Barone M.F
. Measures of agreement between computation and
experiment: Validation metrics // Journal of Computational Physics. 2006. Vol. 217.
No. 1. P. 5–36.
14.
MEMPSODE
: A global optimization software based on hybridization of
population-based algorithms and local searches / C. Voglis, K.E. Parsopoulos,
D.G. Papageorgiou, I.E. Lagaris, M.N. Vrahatis // Computer Physics
Communications. 2012. Vol. 183. No. 2. P. 1139–1154.
15.
Карпенко А.П.
Современные алгоритмы поисковой оптимизации. Алгоритмы,
вдохновленные природой. М.: Изд-во МГТУ им. Н.Э. Баумана, 2014. 446 с.
16.
Luz E.F.P.
,
Becceneri J.C.
,
De Campos Velho H.F.
A new multi-particle collision
algorithm for optimization in a high performance environment // Journal of
Computational Interdisciplinary Sciences. 2008. Vol. 1. P. 3–10.
17.
Bagirov A.M.
,
Al Nuaimat A.
,
Sultanova N.
Hyperbolic smoothing function method
for minimax problems // Optimization: A Journal of Mathematical Programming and
Operations Research. 2013. Vol. 62. No. 6. P. 759–782.
18.
Сулимов В.Д.
,
Шкапов П.М.
Гибридные алгоритмы вычислительной диагности-
ки гидромеханических систем // Вестник МГТУ им. Н.Э. Баумана. Сер. Есте-
ственные науки. 2014. № 4. С. 47–63.
19.
Lera D.
,
Sergeev Ya.D.
Deterministic global optimization using space-filling curves
and multiple estimates of Lipschitz and H¨older constants // Computations in Nonlinear
Science and Numerical Simulations. 2015. Vol. 23. No. 1–3. P. 326–342.
20.
Sulimov V.D.
,
Shkapov P.M.
Application of hybrid algorithms to computational
diagnostic problems for hydromechanical systems // Journal of Mechanics
Engineering and Automation. 2012. Vol. 2. No. 12. P. 734–741.
REFERENCES
[1] Pandoussis M.P. The canonical problem of the fluid-conveying pipe and radiation
of the knowledge gained to other dynamics problems across Applied Mechanics.
Journal of Sound and Vibration
, 2008, vol. 310, no. 3, pp. 462–492.
[2] Wang L., Gan J., Ni Q. Natural frequency analysis of fluid-conveying pipes in the
ADINA system.
Journal of Physics: Conference Series
, 2013, vol. 449, p. 012014.
DOI: 10.1088/1742-6596/448/1/012014
[3] Dai H.L., Wang L., Qian Q., Gan J. Vibration analysis of three-dimensional pipes
conveying fluid with consideration of steady combined force by transfer matrix
method.
Applied Mathematics and Computation
, 2012, vol. 219, no. 5, pp. 2453–
2464.
[4] Li S.-J., Liu G.-M., Kong W.-T. Vibration analysis of pipes conveying fluid by
transfer matrix method.
Nuclear Engineering and Design
, 2014, vol. 266, no. 1,
pp. 78–88.
[5] Xu M-R., Xu S.-P., Guo H.-Y. Determination of natural frequencies of fluid-
conveying pipes using homotopy perturbation method.
Computers and Mathematics
with Applications
, 2010, vol. 60, no. 3, pp. 520–527.
[6] Luczko J., Czerwinski A. Parametric vibrations of pipes induced by pulsating flows
in hydraulic systems.
Journal of Theoretical and Applied Mechanics
, 2014, vol. 52,
no. 3, pp. 719–730.
[7] Mironov M.A., Pyatakov P.A., Andreev A.A. Forced oscillations of a pipe conveying
a fluid flow.
Akusticheskiy zhurnal
[Acoustical Journal], 2010, vol. 56, no. 5, pp. 684–
692 (in Russ.).
[8] Dai H.L., Wang L., Ni Q. Dynamics of a fluid-conveying pipe of two different
materials.
International Journal of Engineering Science
, 2013, vol. 73, no. 1,
pp. 67–76.
76
ISSN 1812-3368. Вестник МГТУ им. Н.Э. Баумана. Сер. “Естественные науки”. 2016. № 2