[9] Yuan Y. An iterative method for updating gyroscopic systems based on measured
modal data.
Applied Mathematics and Computation
, 2011, vol. 218, no. 7, pp. 3753–
3762.
[10] Kirsch A. An introduction to the mathematical theory of inverse problems. N.Y.,
Springer, 2011. 308 p.
[11] Chu D., Lin L., Tan R.C.E., Wei Y. Condition numbers and perturbation analysis
for the Tikhonov regularization of discrete ill-posed problems. Numerical Linear
Algebra with Applications, 2011, vol. 18, no. 1, pp. 87–103.
[12] Renaut R.A., Hnetynkova I., Mead J. Regularization parameter estimation for large
scale Tikhonov regularization using a priori information.
Computational Statistics &
Data Analysis
, 2010, vol. 54, no. 12, pp. 3430–3445.
[13] Oberkampf W.L., Barone M.F. Measures of agreement between computation and
experiment: Validation metrics.
Journal of Computational Physics
, 2006, vol. 217,
no. 1, pp. 5–36.
[14] Voglis C., Parsopoulos K.E., Papageorgiou D.G., Lagaris I.E., Vrahatis M.N.
MEMPSODE: A global optimization software based on hybridization of population-
based algorithms and local searches.
Computer Physics Communications
, 2012,
vol. 183, no. 2, pp. 1139–1154.
[15] Karpenko A.P. Sovremennye algoritmy poiskovoy optimizatsii. Algoritmy,
vdokhnovlennye prirodoy [Modern algorithms of searching optimization. Algorithms
inspired by Nature]. Moscow, MGTU im. N.E. Baumana Publ., 2014. 446 p.
[16] Luz E.F.P., Becceneri J.C., De Campos Velho H.F. A new multi-particle collision
algorithm for optimization in a high performance environment.
Journal of
Computational Interdisciplinary Sciences
, 2008, vol. 1, pp. 3–10.
[17] Bagirov A.M., Al Nuaimat A., Sultanova N. Hyperbolic smoothing function method
for minimax problems.
Optimization: A Journal of Mathematical Programming and
Operations Research
, 2013, vol. 62, no. 6, pp. 759–782.
[18] Sulimov V.D., Shkapov P.M. Hybrid algorithms of computational diagnostics of
hydromechanical systems.
Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Estestv.
Nauki
[Herald of the Bauman Moscow State Tech. Univ., Nat. Sci.], 2014, no. 4,
pp. 47–63 (in Russ.).
[19] Lera D., Sergeev Ya.D. Deterministic global optimization using space-filling curves
and multiple estimates of Lipschitz and H¨older constants.
Computations in Nonlinear
Science and Numerical Simulations
, 2015, vol. 23, no. 1–3, pp. 326–342.
[20] Sulimov V.D., Shkapov P.M. Application of hybrid algorithms to computational
diagnostic problems for hydromechanical systems.
Journal of Mechanics
Engineering and Automation
, 2012, vol. 2, no. 12, pp. 734–741.
Статья поступила в редакцию 26.10.2015
Сулимов Валерий Дмитриевич — старший преподаватель кафедры “Теоретическая
механика” МГТУ им. Н.Э. Баумана (Российская Федерация, 105005, Москва, 2-я Бау-
манская ул., д. 5).
Sulimov V.D. — Senior Teacher of Theoretical Mechanics Department, Bauman
Moscow State Technical University (2-ya Baumanskaya ul. 5, Moscow, 105005 Russian
Federation).
Шкапов Павел Михайлович — д-р техн. наук, профессор, заведующий кафедрой
“Теоретическая механика” МГТУ им. Н.Э. Баумана (Российская Федерация, 105005,
Москва, 2-я Бауманская ул., д. 5).
Shkapov P.M. — Dr. Sci. (Eng.), Professor, Head of Theoretical Mechanics Department,
Bauman Moscow State Technical University (2-ya Baumanskaya ul. 5, Moscow, 105005
Russian Federation).
ISSN 1812-3368. Вестник МГТУ им. Н.Э. Баумана. Сер. “Естественные науки”. 2016. № 2
77