Previous Page  13 / 14 Next Page
Information
Show Menu
Previous Page 13 / 14 Next Page
Page Background

[9] Yuan Y. An iterative method for updating gyroscopic systems based on measured

modal data.

Applied Mathematics and Computation

, 2011, vol. 218, no. 7, pp. 3753–

3762.

[10] Kirsch A. An introduction to the mathematical theory of inverse problems. N.Y.,

Springer, 2011. 308 p.

[11] Chu D., Lin L., Tan R.C.E., Wei Y. Condition numbers and perturbation analysis

for the Tikhonov regularization of discrete ill-posed problems. Numerical Linear

Algebra with Applications, 2011, vol. 18, no. 1, pp. 87–103.

[12] Renaut R.A., Hnetynkova I., Mead J. Regularization parameter estimation for large

scale Tikhonov regularization using a priori information.

Computational Statistics &

Data Analysis

, 2010, vol. 54, no. 12, pp. 3430–3445.

[13] Oberkampf W.L., Barone M.F. Measures of agreement between computation and

experiment: Validation metrics.

Journal of Computational Physics

, 2006, vol. 217,

no. 1, pp. 5–36.

[14] Voglis C., Parsopoulos K.E., Papageorgiou D.G., Lagaris I.E., Vrahatis M.N.

MEMPSODE: A global optimization software based on hybridization of population-

based algorithms and local searches.

Computer Physics Communications

, 2012,

vol. 183, no. 2, pp. 1139–1154.

[15] Karpenko A.P. Sovremennye algoritmy poiskovoy optimizatsii. Algoritmy,

vdokhnovlennye prirodoy [Modern algorithms of searching optimization. Algorithms

inspired by Nature]. Moscow, MGTU im. N.E. Baumana Publ., 2014. 446 p.

[16] Luz E.F.P., Becceneri J.C., De Campos Velho H.F. A new multi-particle collision

algorithm for optimization in a high performance environment.

Journal of

Computational Interdisciplinary Sciences

, 2008, vol. 1, pp. 3–10.

[17] Bagirov A.M., Al Nuaimat A., Sultanova N. Hyperbolic smoothing function method

for minimax problems.

Optimization: A Journal of Mathematical Programming and

Operations Research

, 2013, vol. 62, no. 6, pp. 759–782.

[18] Sulimov V.D., Shkapov P.M. Hybrid algorithms of computational diagnostics of

hydromechanical systems.

Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Estestv.

Nauki

[Herald of the Bauman Moscow State Tech. Univ., Nat. Sci.], 2014, no. 4,

pp. 47–63 (in Russ.).

[19] Lera D., Sergeev Ya.D. Deterministic global optimization using space-filling curves

and multiple estimates of Lipschitz and H¨older constants.

Computations in Nonlinear

Science and Numerical Simulations

, 2015, vol. 23, no. 1–3, pp. 326–342.

[20] Sulimov V.D., Shkapov P.M. Application of hybrid algorithms to computational

diagnostic problems for hydromechanical systems.

Journal of Mechanics

Engineering and Automation

, 2012, vol. 2, no. 12, pp. 734–741.

Статья поступила в редакцию 26.10.2015

Сулимов Валерий Дмитриевич — старший преподаватель кафедры “Теоретическая

механика” МГТУ им. Н.Э. Баумана (Российская Федерация, 105005, Москва, 2-я Бау-

манская ул., д. 5).

Sulimov V.D. — Senior Teacher of Theoretical Mechanics Department, Bauman

Moscow State Technical University (2-ya Baumanskaya ul. 5, Moscow, 105005 Russian

Federation).

Шкапов Павел Михайлович — д-р техн. наук, профессор, заведующий кафедрой

“Теоретическая механика” МГТУ им. Н.Э. Баумана (Российская Федерация, 105005,

Москва, 2-я Бауманская ул., д. 5).

Shkapov P.M. — Dr. Sci. (Eng.), Professor, Head of Theoretical Mechanics Department,

Bauman Moscow State Technical University (2-ya Baumanskaya ul. 5, Moscow, 105005

Russian Federation).

ISSN 1812-3368. Вестник МГТУ им. Н.Э. Баумана. Сер. “Естественные науки”. 2016. № 2

77