80
ISSN 1812-3368. Вестник МГТУ им. Н.Э. Баумана. Сер. «Естественные науки». 2016. № 3
[2] Kanatnikov A.N., Krishchenko A.P. Terminal Control of Spatial Motion of
Flying Vehicles.
Journal of Computer and Systems Sciences International
, 2008,
vol. 47, no. 5, pp. 718–731.
[3] Levine J., Martin Ph., Rouchon P
.
Flat systems. Mini-Course.
ECC’ 97 European
Control Conference
. Brussels, 1997, July 1–4. 54 p.
[4] Krishchenko A.P., Fetisov D.A. Transformation of Affine Systems and Solving
of Terminal Control Problems.
Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana,
Estestv. Nauki
[Herald of the Bauman Moscow State Tech. Univ., Nat. Sci.],
2013, no. 2, pp. 3–16 (in Russ.).
[5] Krishchenko A.P., Fetisov D.A. Terminal control problem for affine systems.
Differential Equations
, 2013, vol. 49, no. 11, pp. 1378–1388.
DOI: 10.1134/S0012266113110062
[6] Krishchenko A.P., Fetisov D.A. Terminal problem for multidimensional affine
systems.
Doklady Mathematics
, 2013, vol. 88, no. 2, pp. 608–612.
DOI: 10.1134/S1064562413050098
[7] Fetisov D.A. Solution of Terminal Problems for Affine Systems in Quasicanoni-
cal Form on the Basis of Orbital Linearization.
Differential Equations
, 2014,
vol. 50, no. 12, pp. 1664–1672. DOI: 10.1134/S0012266114120106
[8] Kasatkina T.S., Krishchenko A.P. Variations Method to Solve Terminal Problems
for the Second Order Systems of Canonical Form with State Constraints.
Nauka i
obrazovanie
.
MGTU im. N.E. Baumana
[Science & Education of the Bauman
MSTU. Electronic Journal], 2012, no. 5. DOI: 10.7463/0515.0766238 Available
at:
http://technomag.bmstu.ru/en/doc/766238.html[9] Krut'ko P.D. Obratnye zadachi dinamiki upravlyaemykh sistem: nelineynye
modeli [Inverse problems of control system dynamics. Nonlinear models].
Moscow, Nauka Publ., 1988.
[10] Krishchenko A.P. Parametric Sets of Integral Equations Solutions.
Vestn. Mosk.
Gos. Tekh. Univ. im. N.E. Baumana, Estestv. Nauki
[Herald of the Bauman Mos-
cow State Tech. Univ., Nat. Sci.], 2014, no. 3, pp. 3–10 (in Russ.).
[11] Velishchanskiy M.A., Krishchenko A.P. A Terminal Control Problem for the
Second Order System with Restrictions.
Nauka i obrazovanie
.
MGTU
im. N.E. Baumana
[Science & Education of the Bauman MSTU. Electronic Jour-
nal], 2015, no. 8. DOI: 10.7463/0815.0793667 Available at: http://
technomag.bmstu.ru/en/doc/793667.html.
[12] Gorbatenko S.A., Makashov E.M., Polushkin Yu.F., Sheftel' A.V. Mekhanika
poleta: Spravochnik [Mechanics of Flight. Handbook]. Moscow, Mashinostroenie
Publ., 1989. 420 p.
[13] Zhevnin A.A., Krishchenko A.P., Glushko Yu.V. Controllability and observabil-
ity of nonlinear systems and synthesis of terminal control.
Dokl. AN SSSR
, 1982,
vol. 266, no. 4, pp. 807–811 (in Russ.).
[14] Krasnoshchechenko V.I., Krishchenko A.P. Nelineynye sistemy: geometricheskie
metody analiza i sinteza [Nonlinear systems: geometrical methods of analysis and
synthesis]. Moscow, MGTU im. N.E. Baumana Publ., 2005. 520 p.
[15] Byrd R.H., Gilbert J.C., Nocedal J
.
A Trust Region Method Based on Interior
Point Techniques for Nonlinear Programming.
Mathematical Programming
,
2000, vol. 89, no. 1, pp. 149–185.
[16] Byrd R.H., Hribar M.E., Nocedal J. An Interior Point Algorithm for Large-Scale
Nonlinear Programming.
SIAM Journal on Optimization
, 1999, vol. 9, no. 4,
pp. 877–900.
[17] Waltz R.A., Morales J.L., Nocedal J., Orban D
.
An interior algorithm for
nonlinear optimization that combines line search and trust region steps.
Mathematical Programming
, 2006, vol. 107, no. 3, pp. 391–408.
Статья поступила в редакцию 26.11.2015