Previous Page  11 / 12 Next Page
Information
Show Menu
Previous Page 11 / 12 Next Page
Page Background

80

ISSN 1812-3368. Вестник МГТУ им. Н.Э. Баумана. Сер. «Естественные науки». 2016. № 3

[2] Kanatnikov A.N., Krishchenko A.P. Terminal Control of Spatial Motion of

Flying Vehicles.

Journal of Computer and Systems Sciences International

, 2008,

vol. 47, no. 5, pp. 718–731.

[3] Levine J., Martin Ph., Rouchon P

.

Flat systems. Mini-Course.

ECC’ 97 European

Control Conference

. Brussels, 1997, July 1–4. 54 p.

[4] Krishchenko A.P., Fetisov D.A. Transformation of Affine Systems and Solving

of Terminal Control Problems.

Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana,

Estestv. Nauki

[Herald of the Bauman Moscow State Tech. Univ., Nat. Sci.],

2013, no. 2, pp. 3–16 (in Russ.).

[5] Krishchenko A.P., Fetisov D.A. Terminal control problem for affine systems.

Differential Equations

, 2013, vol. 49, no. 11, pp. 1378–1388.

DOI: 10.1134/S0012266113110062

[6] Krishchenko A.P., Fetisov D.A. Terminal problem for multidimensional affine

systems.

Doklady Mathematics

, 2013, vol. 88, no. 2, pp. 608–612.

DOI: 10.1134/S1064562413050098

[7] Fetisov D.A. Solution of Terminal Problems for Affine Systems in Quasicanoni-

cal Form on the Basis of Orbital Linearization.

Differential Equations

, 2014,

vol. 50, no. 12, pp. 1664–1672. DOI: 10.1134/S0012266114120106

[8] Kasatkina T.S., Krishchenko A.P. Variations Method to Solve Terminal Problems

for the Second Order Systems of Canonical Form with State Constraints.

Nauka i

obrazovanie

.

MGTU im. N.E. Baumana

[Science & Education of the Bauman

MSTU. Electronic Journal], 2012, no. 5. DOI: 10.7463/0515.0766238 Available

at:

http://technomag.bmstu.ru/en/doc/766238.html

[9] Krut'ko P.D. Obratnye zadachi dinamiki upravlyaemykh sistem: nelineynye

modeli [Inverse problems of control system dynamics. Nonlinear models].

Moscow, Nauka Publ., 1988.

[10] Krishchenko A.P. Parametric Sets of Integral Equations Solutions.

Vestn. Mosk.

Gos. Tekh. Univ. im. N.E. Baumana, Estestv. Nauki

[Herald of the Bauman Mos-

cow State Tech. Univ., Nat. Sci.], 2014, no. 3, pp. 3–10 (in Russ.).

[11] Velishchanskiy M.A., Krishchenko A.P. A Terminal Control Problem for the

Second Order System with Restrictions.

Nauka i obrazovanie

.

MGTU

im. N.E. Baumana

[Science & Education of the Bauman MSTU. Electronic Jour-

nal], 2015, no. 8. DOI: 10.7463/0815.0793667 Available at: http://

technomag.bmstu.ru/

en/doc/793667.html.

[12] Gorbatenko S.A., Makashov E.M., Polushkin Yu.F., Sheftel' A.V. Mekhanika

poleta: Spravochnik [Mechanics of Flight. Handbook]. Moscow, Mashinostroenie

Publ., 1989. 420 p.

[13] Zhevnin A.A., Krishchenko A.P., Glushko Yu.V. Controllability and observabil-

ity of nonlinear systems and synthesis of terminal control.

Dokl. AN SSSR

, 1982,

vol. 266, no. 4, pp. 807–811 (in Russ.).

[14] Krasnoshchechenko V.I., Krishchenko A.P. Nelineynye sistemy: geometricheskie

metody analiza i sinteza [Nonlinear systems: geometrical methods of analysis and

synthesis]. Moscow, MGTU im. N.E. Baumana Publ., 2005. 520 p.

[15] Byrd R.H., Gilbert J.C., Nocedal J

.

A Trust Region Method Based on Interior

Point Techniques for Nonlinear Programming.

Mathematical Programming

,

2000, vol. 89, no. 1, pp. 149–185.

[16] Byrd R.H., Hribar M.E., Nocedal J. An Interior Point Algorithm for Large-Scale

Nonlinear Programming.

SIAM Journal on Optimization

, 1999, vol. 9, no. 4,

pp. 877–900.

[17] Waltz R.A., Morales J.L., Nocedal J., Orban D

.

An interior algorithm for

nonlinear optimization that combines line search and trust region steps.

Mathematical Programming

, 2006, vol. 107, no. 3, pp. 391–408.

Статья поступила в редакцию 26.11.2015