А.В. Аттетков, И.К. Волков
106
ISSN 1812-3368. Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки. 2016. № 4
[6] Attetkov A.V., Volkov I.K., Pilyavskiy S.S. The hierarchy of mathematical models of heat
transfer process in a solid with coated spherical hot spot.
Tr. XVII Shkoly–seminara molodykh
uchenykh i spetsialistov pod rukovodstvom akad. RAN A.I. Leont'eva
[Proc. of the XVII School
–
Seminar of Young Scientists and Specialists under the leadership of RAS academician A.I. Le-
ontyev]. Moscow, 2009, vol. 1, pp. 166–169 (in Russ.).
[7] Attetkov A.V., Volkov I.K., Pilyavskiy S.S. Temperature field of the isotrpic firm body with
the spherical center of the warming up possessing covering.
Izv. RAN. Energetika
[Proceedings
of the Russian Academy of Sciences. Power Engineering], 2010, no. 3, pp. 92–98 (in Russ.).
[8] Attetkov A.V. On the possibility of control action on the temperature field of a solid body
with a spherical heating-up spot having a heat-absorbing coating.
Teplovye protsessy v tekhnike
[Thermal Processes in Engineering], 2012, vol. 4, no. 10, pp. 475–480 (in Russ.).
[9] Attetkov A.V., Volkov I.K. The singular integral transformations as a method of solution
for one class of non-stationary heat conduction problems.
Izv. RAN. Energetika
[Proceedings
of the Russian Academy of Sciences. Power Engineering], 2016, no. 1, pp. 148–156 (in Russ.).
[10] Attetkov A.V., Volkov I.K. “A refined model of concentrated capacity” of heat transfer in
a solid with coated spherical hot spot.
Teplovye protsessy v tekhnike
[Thermal Processes in En-
gineering], 2016, vol. 8, no. 2, pp. 92–98 (in Russ.).
[11] Sedov L.I. Similarity and dimensional methods in mechanics. Tenth Ed. CRC Press, Inc.,
1993. 496 p.
[12] Zel'dovich Ya.B., Rayzer Yu.P. Fizika udarnykh voln i vysokotemperaturnykh gidrodi-
namicheskikh yavleniy [Physics of shock waves and high-temperature hydrodynamic pheno-
mena]. Moscow, Nauka Publ., 1966. 686 p.
[13] Volosevich P.P., Levanov E.I. Avtomodel'nye resheniya zadach gazovoy dinamiki i teplo-
perenosa [Self-similar solutions of problems of gas dynamics and heat thermal conductions].
Moscow, MFTI Publ., 1997. 240 p.
[14] Samarskiy A.A., Galaktionov V.A., Kurdyumov S.P., Mikhaylov A.P. Blow-up in quasi-
linear parabolic equations. Berlin, Walter de Gruyter, 1995. 535 p.
[15] Ladyzhenskaya O.A., Solonnikov V.A., Ural'tseva N.N. Lineynye i kvazilineynye
uravneniya parabolicheskogo tipa [Linear and quasi-linear equations of parabolic type]. Mos-
cow, Nauka Publ., 1967. 736 p.
[16] Margolin A.D., Krupkin V.G. Bubble development in a liquid in the presence of a gas
source.
Combustion, Explosion, and Shock Waves
, 1985, vol. 21, iss. 2, pp. 198–202.
Attetkov A.V.
— Cand. Sci. (Eng.), Senior Researcher, Assoc. Professor of Applied Mathema-
tics Department, Bauman Moscow State Technical University (2-ya Baumanskaya ul. 5,
Moscow, 105005 Russian Federation).
Volkov I.K.
— Dr. Sci. (Phys.-Math.), Professor of Mathematical Modelling Department,
Bauman Moscow State Technical University (2-ya Baumanskaya ul. 5, Moscow, 105005 Rus-
sian Federation).
Please cite this article in English as:
Attetkov A.V., Volkov I.K. Self-Similar Solution of Heat Transport Problems in Solid with
Heat-Absorbing Coating Spherical Hot Spot.
Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana,
Estestv. Nauki
[Herald of the Bauman Moscow State Tech. Univ., Nat. Sci.], 2016, no. 4,
pp. 97–106. DOI: 10.18698/1812-3368-2016-4-97-106