Previous Page  18 / 20 Next Page
Information
Show Menu
Previous Page 18 / 20 Next Page
Page Background

Ю.И. Димитриенко, И.О. Богданов

90

ISSN 1812-3368. Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки. 2016. № 6

dimensional problems of buckling theory. Nowadays, nu-

merical methods of their solution are not known. The work

gives the variation statement of the three-dimensional prob-

lem of elastic structures buckling theory. According to this

statement, we proposed the final-element method for sol-

ving the buckling problems which is reduced to finding the

eigen values of the linear algebraic equations system with a

global symmetric stiffness matrix. As a result, we developed

the program module implementing the offered final-element

method within the SMCM program complex developed in

Scientific and Educational Center "SIMPLEX" at Bauman

Moscow State Technical University with the use of the CSIR

storage scheme of the sparse matrixes and a bi-conjugate

gradient method. We carried out the test calculation for the

rectangular plate buckling problem under the longitudinal

compression. The comparison of the final-element solution

of this problem according to the three-dimensional theory

and Timoshenko plates theory has shown high precision of

the developed numerical method when determining critical

loads. At the same time, the three-dimensional theory allows

for more exact forms of eigen functions of stability loss

REFERENCES

[1] Timoshenko S.P., Gere J.M. Theory of elastic stability. N.Y., Toronto, London, McGraw-

Hill, 1961. 356 p.

[2] Bolotin V.V. Nekonservativnye zadachi teorii uprugoy ustoychivosti [Nonconservative

problems of the theory of elastic stability]. Мoscow, Gostekhteoretizdat Publ., 1961. 339 p.

[3] Vol’mir A.S. Ustoychivost’ deformiruemykh system [Stability of deformable systems].

Moscow, Nauka Publ., 1967. 964 p.

[4] Grigolyuk E.I., Chulkov P.P. Ustoychivost' i kolebaniya trekhsloynykh obolochek [Stability

and fluctuations of three-layer covers]. Moscow, Mashinostroenie Publ., 1973. 215 p.

[5] Alfutov N.A., Zinoviev P.A., Popov B.G

.

Raschet mnogosloynykh plastin i obolochek iz

kompozitsionnykh materialov [Calculation of multilayer composite plates and shells].

Мoscow, Мashinostroenie Publ., 1980. 324 p.

[6] Panovko Ya.A., Gubanova I.I. Ustoychivost' i kolebaniya uprugikh sistem: Sovremennye

kontseptsii, oshibki i paradoksy [Stability and fluctuations of elastic systems: Modern con-

cepts, mistakes and paradoxes]. Moscow, Nauka Publ., 1979. 384 p.

[7] Iyengar N.G.R. Structural stability of columns and plates, New Delhi, Affiliated East-West

Press, 1986. 284 p.

[8] Vasil'ev V.V. Mekhanika konstruktsiy iz kompozitsionnykh materialov [Mechanics

of composite structures]. Moscow, Mashinostroenie Publ., 1988. 272 p.

[9] Bazant Z.P., Cedolin L. Stability of structures. Oxford, Oxford University Press, 1990.

316 p.