Previous Page  19 / 20 Next Page
Information
Show Menu
Previous Page 19 / 20 Next Page
Page Background

Конечно-элементный метод решения трехмерных задач…

ISSN 1812-3368. Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки. 2016. № 6

91

[10] Pikul' V.V. Current state of the theory of stability of covers.

Vestn. DVO RAN

[Bulletin

of the Far Eastern Branch of the Russian Academy of Sciences], 2008, no. 3, pp. 3–9 (in Russ.).

[11] Van'ko V.I. Ocherki po teorii ustoychivosti elementov konstruktsiy [Sketches according

to the theory of stability of elements of designs]. Moscow, MGTU im. N.E. Baumana Publ.,

2014. 220 p.

[12] Solomonov Yu.S., Georgievskiy V.P., Nedbay

A.Ya

., Andryushin V.A. Prikladnye zadachi

mekhaniki kompozitnykh tsilindricheskikh obolochek [Applied problems of mechanics

of composite cylindrical covers]. Moscow, Fizmatlit Publ., 2014. 408 p.

[13] Bolotin V.V. About data of three-dimensional tasks of the theory of elastic resistance to

one-dimensional and two-dimensional tasks.

Problemy ustoychivosti v stroitel'noy mekhanike

[Stability problems in construction mechanics], 1965, pp. 166–179 (in Russ.).

[14] Guz' A.N. Osnovy trekhmernoy teorii ustoychivosti deformiruemykh tel [Bases of the

three-dimensional theory of stability of deformable bodies]. Kiev, Vishcha shkola Publ., 1986.

512 p.

[15] Novozhilov V.V. Osnovy nelineynoy teorii uprugosti [Bases of the nonlinear theory

of elasticity]. Moscow, URSS Publ., 2003. 208 p.

[16] Dimitrienko Yu.I. Generalized three-dimensional theory of elastic bodies stability. Part 3.

Theory of shell stability.

Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Estestv. Nauki

[Herald of the Bauman Moscow State Tech. Univ., Nat. Sci.], 2014, no. 2, pp. 77–89 (in Russ.).

[17] Dimitrienko Yu.I. Mekhanika sploshnoy sredy [Continuum mechanics]. Vol. 4. Osnovy

mekhaniki tverdogo tela [Fundamentals of solid mechanics]. Moscow, MGTU im. N.E. Bau-

mana Publ., 2013. 624 p.

[18] Dimitrienko Yu.I. Theory of plates stability, based on asymptotic analysis of stability the-

ory equations for three-dimensional elastic bodies.

Jelektr. nauchno-tekh. izd. “Inzhenernyy

zhurnal: nauka i innovacii”

[El. Sc.-Tech. Publ. “Eng. J.: Science and Innovation”], 2015,

iss. 9 (45). DOI: 10.18698/2308-6033-2015-9-1416

Available at:

http://engjournal.ru/catalog/mech/mdsb/1416.html

[19] Dimitrienko Yu.I., Yurin Yu.V. Final and element modeling of the intense deformed con-

dition of rocks taking into account creep.

Matematicheskoe modelirovanie i chislennye metody

[Mathematical modeling and numerical methods], 2015, no. 3, pp. 101–118.

DOI: 10.18698/2309-3684-2015-3-101118

[20] Segerlind L. Applied finite element analysis. N.Y., John Wiley & Sons, 1984. 392 p.

[21] Kuz'min M.A., Lebedev D.L., Popov B.G. Prochnost', zhestkost', ustoychivost' elementov

konstruktsiy. Teoriya i praktikum [Strength, toughness, resistance of structural elements: The-

ory and practice]. Moscow, Akademkniga Publ., 2008. 159 p.

Dimitrienko Yu.I.

— Dr. Sci. (Phys.-Math.), Professor, Director of the Scientific-Educational

Center of Supercomputer Engineering Modeling and Program Software Development, Bau-

man Moscow State Technical University; Head of the Computational Mathematics and Ma-

thematical Physics Department, Bauman Moscow State Technical University (2-ya Bauman-

skaya ul. 5, Moscow, 105005 Russian Federation).