Экспериментальное исследование устойчивости обращенных стабилизируемых маятников
ISSN 1812-3368. Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки. 2017. № 2
39
[9]
Maylybaev A.A., Seyranyan A.P. Mnogoparametricheskie zadachi ustoychivosti. Teoriya i
prilozheniya v mekhanike [Multiparameter stability problems. Theory and applications in
mechanics]. Moscow, Fizmatlit Publ., 2009. 400 p.
[10]
Petrov A.G. On vibrational energy of conservative mechanical system.
Doklady RAN
,
2010, vol. 431, no. 6, pp. 762−765 (in Russ.).
[11]
Seyranyan A.A., Seyranyan A.P. On inverted pendulum stability with vibrating suspen-
sion centre.
Prikladnaya Matematika i Mekhanika
, 2006, vol. 70, no. 5, pp. 835−843 (in Russ.).
[12] Kholostova O.V. On stability of relative equilibria of a double pendulum with vibrating
suspension point.
Mechanics of Solids
, 2011, vol. 46, no. 4, pp. 508–518.
DOI: 10.3103/S0025654411040029 Available at:
http://link.springer.com/journal/11964[13] Gribkov V.A., Khokhlov A.O. Stability of stabilizing inverted pendulum consisting of
some components: Experiment and calculation.
XI Vserossiyskiy s''ezd po fundamental'nym
problemam teoreticheskoy i prikladnoy mekhaniki: sbornik dokladov
[Proc. XI Russian conf. on
fundamental problems of theoretical and applied mechanics]. Kazan', Kazan University
Publ., 2015, рp. 1054−1056 (in Russ.).
[14] Gribkov V.A., Khokhlov A.O. Defining dynamic characteristics of multilink pendulum
system with comparison of the calculated and experimental results.
Nauka i obrazovanie.
MGTU im. N.E. Baumana
[Science and Education of Bauman MSTU], 2015, no. 9, pp. 352–
375 (in Russ.). DOI: 10.7463/0915.0789404 Available at:
http://technomag.bmstu.ru/en/doc/789404.html
[15] Acheson D.J., Mullin T. Upside-down pendulums.
Nature
, 1993, vol. 366, pp. 215−216.
[16] Acheson D.J. A pendulum theorem.
Proc. Roy. Soc. London. Ser. A
., 1993, vol. 443,
pp. 239−245.
[17]
Gribkov V.A., Khokhlov A.O. Stability of the triple inverted physical pendulum described
in the article of academician V.N. Chelomey (1983).
Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Bau-
mana, Mashinostr.
[Herald of the Bauman Moscow State Tech. Univ., Mechan. Eng.], 2015,
no. 6, pp. 33–49. DOI: 10.18698/0236-3941-2015-6-33-49
[18] Gribkov V.A., Khokhlov A.O. A method to simplify solution of stability problem for pa-
rametrically stabilized statically unstable pendulum systems.
Izvestiya vysshikh uchebnykh
zavedeniy. Mashinostroenie
[Proceedings of Higher Educational Institutions. Маchine Buil-
ding], 2015, no. 11, pp. 29–38. DOI: 10.18698/0536-1044-2015-11-29-38
Gribkov V.A.
— Cand. Sc. (Eng.), Assoc. Professor of Aerospace Systems Department,
Bauman Moscow State Technical University (2-ya Baumanskaya ul. 5, Moscow, 105005 Rus-
sian Federation).
Khokhlov A.O.
— post-graduate student of Aerospace Systems Department, Bauman Moscow
State Technical University (2-ya Baumanskaya ul. 5, Moscow, 105005 Russian Federation),
employee Khrunichev State Research and Production Space Center (Novozavodskaya ul. 18,
Moscow, 121087 Russian Federation).
Please cite this article in English as:
Gribkov V.A., Khokhlov A.O. Experimental Study of Inverted Regulable Pendulum Stability.
Vestn.
Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Estestv. Nauki
[Herald of the Bauman Moscow State
Tech. Univ., Nat. Sci.], 2017, no. 2, pp. 22–39. DOI: 10.18698/1812-3368-2017-2-22-39