Previous Page  18 / 18
Information
Show Menu
Previous Page 18 / 18
Page Background

Экспериментальное исследование устойчивости обращенных стабилизируемых маятников

ISSN 1812-3368. Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки. 2017. № 2

39

[9]

Maylybaev A.A., Seyranyan A.P. Mnogoparametricheskie zadachi ustoychivosti. Teoriya i

prilozheniya v mekhanike [Multiparameter stability problems. Theory and applications in

mechanics]. Moscow, Fizmatlit Publ., 2009. 400 p.

[10]

Petrov A.G. On vibrational energy of conservative mechanical system.

Doklady RAN

,

2010, vol. 431, no. 6, pp. 762−765 (in Russ.).

[11]

Seyranyan A.A., Seyranyan A.P. On inverted pendulum stability with vibrating suspen-

sion centre.

Prikladnaya Matematika i Mekhanika

, 2006, vol. 70, no. 5, pp. 835−843 (in Russ.).

[12] Kholostova O.V. On stability of relative equilibria of a double pendulum with vibrating

suspension point.

Mechanics of Solids

, 2011, vol. 46, no. 4, pp. 508–518.

DOI: 10.3103/S0025654411040029 Available at:

http://link.springer.com/journal/11964

[13] Gribkov V.A., Khokhlov A.O. Stability of stabilizing inverted pendulum consisting of

some components: Experiment and calculation.

XI Vserossiyskiy s''ezd po fundamental'nym

problemam teoreticheskoy i prikladnoy mekhaniki: sbornik dokladov

[Proc. XI Russian conf. on

fundamental problems of theoretical and applied mechanics]. Kazan', Kazan University

Publ., 2015, рp. 1054−1056 (in Russ.).

[14] Gribkov V.A., Khokhlov A.O. Defining dynamic characteristics of multilink pendulum

system with comparison of the calculated and experimental results.

Nauka i obrazovanie.

MGTU im. N.E. Baumana

[Science and Education of Bauman MSTU], 2015, no. 9, pp. 352–

375 (in Russ.). DOI: 10.7463/0915.0789404 Available at:

http://technomag.bmstu.ru/

en/doc/789404.html

[15] Acheson D.J., Mullin T. Upside-down pendulums.

Nature

, 1993, vol. 366, pp. 215−216.

[16] Acheson D.J. A pendulum theorem.

Proc. Roy. Soc. London. Ser. A

., 1993, vol. 443,

pp. 239−245.

[17]

Gribkov V.A., Khokhlov A.O. Stability of the triple inverted physical pendulum described

in the article of academician V.N. Chelomey (1983).

Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Bau-

mana, Mashinostr.

[Herald of the Bauman Moscow State Tech. Univ., Mechan. Eng.], 2015,

no. 6, pp. 33–49. DOI: 10.18698/0236-3941-2015-6-33-49

[18] Gribkov V.A., Khokhlov A.O. A method to simplify solution of stability problem for pa-

rametrically stabilized statically unstable pendulum systems.

Izvestiya vysshikh uchebnykh

zavedeniy. Mashinostroenie

[Proceedings of Higher Educational Institutions. Маchine Buil-

ding], 2015, no. 11, pp. 29–38. DOI: 10.18698/0536-1044-2015-11-29-38

Gribkov V.A.

— Cand. Sc. (Eng.), Assoc. Professor of Aerospace Systems Department,

Bauman Moscow State Technical University (2-ya Baumanskaya ul. 5, Moscow, 105005 Rus-

sian Federation).

Khokhlov A.O.

— post-graduate student of Aerospace Systems Department, Bauman Moscow

State Technical University (2-ya Baumanskaya ul. 5, Moscow, 105005 Russian Federation),

employee Khrunichev State Research and Production Space Center (Novozavodskaya ul. 18,

Moscow, 121087 Russian Federation).

Please cite this article in English as:

Gribkov V.A., Khokhlov A.O. Experimental Study of Inverted Regulable Pendulum Stability.

Vestn.

Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Estestv. Nauki

[Herald of the Bauman Moscow State

Tech. Univ., Nat. Sci.], 2017, no. 2, pp. 22–39. DOI: 10.18698/1812-3368-2017-2-22-39