REFERENCES
[1] Komech A.I. Linear partial differential equations with constant coefficients.
Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat.: Fund. Napr.
[Results
of science and technology. Ser. “Modern Problems of Mathematics:
Fundamental Directions”], 1988, vol. 31, pp. 127–261 (in Russ.). Available at:
http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=intf&paperid=113&option_lang=eng (accessed 01.11.2014).
[2] Mikhlin S.G. Lineynye uravneniya v chastnykh proizvodnykh [Linear partial
differential equations]. Мoscow, Vysshaya Shkola Publ., 1977. 430 p.
[3] Bitsadze A.V. Uravneniya matematicheskoy fiziki [Equations of mathematical
physics]. Moscow, Fizmatgiz Publ., 1976. 296 p. (Engl. ed.: Bitsadze A.V.
Equations of mathematical physics. Moscow, Mir Publishers, 1980. 318 p.).
Available at:
http://www.amazon.com/Equations-Mathematical-Physics-A-V-Bitsad-ze/dp/0714715433 (accessed 01.11.2014).
[4] Tikhonov A.N., Samarskiy A.A. Uravneniya matematicheskoy fiziki [Equations of
mathematical physics]. Moscow, MGU Publ., 1999. 798 p. (Engl. ed.: Tikhonov A.N.,
Samarskii A.A. Equations of mathematical physics. Dover Publications;
Reprint edition, 2011. 800 p.). Available at:
http://www.amazon.com/Equations-Mathematical-Physics-Dover-Books/dp/0486664228 (accessed 01.11.2014).
[5] Polyanin A.D. Spravochnik po lineynym uravneniyam matematicheskoy fiziki
[Handbook of linear equations of mathematical physics]. Moscow, Fizmatlit Publ.,
2001. 576 p. (Engl. ed.: Polyanin A.D. Handbook of linear partial differential
equations for engineers and scientists. USA, Chapman and Hall/CRC, 2001. 800 p.).
[6] Kas’yanov E.Yu., Kopaev A.V. On the solution of the Dirichlet problem for some
multidimensional domains by the method of reproducing kernels.
Izv. Vyssh. Uchebn.
Zaved., Mat.
[Russ. Math.], 1991, no. 6, pp. 17–20 (in Russ.).
[7] Vladimirov V.S. Obobshchennye funktsii v matematicheskoy fizike [Tempered
distributions in mathematical physics]. Moscow, Nauka Publ., 1979. 320 p.
[8] Bochner S. Vorlesungen ¨uber Fouriersche Integrale. Leipzig, Akademische
Verlagsgesellschaft m.b. H. VIII, 1932. 229 p. (Engl. ed.: Bochner S. Lectures on
Fourier integrals. Trans. from the Ger. Princeton Uni. Press, 1959. 333 p. Russ. ed.:
Bokhner S. Lektsii ob integralakh Fur’e [Lectures on Fourier integrals]. Moscow,
Fizmatgiz Publ., 1962. 360 p.).
[9] Ditkin V.A., Prudnikov A.P. Integral’nye preobrazovaniya i operatsionnoe ischislenie
[Integral transforms and operator calculus]. Moscow, Fizmatgiz Publ., 1961. 524 p.
[10] Radygin V.M., Golubeva O.V. Primenenie funktsiy kompleksnogo peremennogo v
zadachakh fiziki i tekhniki [Application of function of complex variable in physics
and engineering problems]. Мoscow, Vysshaya Shkola Publ., 1983. 160 p.
[11] Golubeva O.V. Kurs mekhaniki sploshnykh sred [The course of continuum
mechanics]. Мoscow, Vysshaya Shkola Publ., 1972. 367 p.
Статья поступила в редакцию 25.12.2013
Алгазин Олег Дмитриевич — канд. физ.-мат. наук, доцент кафедры “Вычислитель-
ная математика и математическая физика” МГТУ им. Н.Э. Баумана. Автор более 15
научных работ в области краевых задач для аналитических функций.
МГТУ им. Н.Э. Баумана, Российская Федерация, Москва, 105005, 2-я Бауманская ул.,
д. 5.
Algazin O.D. — Cand. Sci. (Phys.-Math.), assoc. professor of “Computational
Mathematics and Mathematical Physics” department of the Bauman Moscow State
Technical University. Author of more than 15 publications in the field of boundary-
value problems for analytic functions.
Bauman Moscow State Technical University, 2-ya Baumanskaya ul. 5, Moscow, 105005
Russian Federation.
12
ISSN 1812-3368. Вестник МГТУ им. Н.Э. Баумана. Сер. “Естественные науки”. 2015. № 1