Background Image
Previous Page  18 / 19 Next Page
Information
Show Menu
Previous Page 18 / 19 Next Page
Page Background

17.

Mauge R.

,

Gerkema T.

Generation of weakly nonlinear nonhydrostatic internal tides

over large topography: a multi-modal approach // Nonlinear Processes Geophysics.

2008. Vol. 15. P. 233–244.

18.

Rees T.

,

Lamb K.G.

,

Poulin F.J.

Asymptotic analysis of the forces internal gravity

waves equation // SIAM Journal of Applied Mathematics. 2012. Vol. 72 (4). P. 1041–

1060.

REFERENCES

[1] Pedlosky J. Waves in the ocean and atmosphere: introduction to wave dynamics.

Berlin–Heidelberg: Springer, 2010. 260 p.

[2] Bulatov V.V., Vladimirov Yu.V. Dinamika negarmonicheskikh volnovykh paketov v

stratifitsirovannykh sredakh [Dynamics of Non-Harmonic Wave Packets in Stratified

Media]. Moscow, Nauka Publ., 2010. 470 p.

[3] Bulatov V.V., Vladimirov Yu.V. Wave dynamics of stratified mediums. Moscow,

Nauka Publ., 2012. 584 p.

[4] Belov V.V., Dobrokhotov

S.Yu.

, Tudorovskiy

T.Ya

. Operator separation for adiabatic

problems in quantum and wave mechanics.

J. Eng. Math

., 2006, vol. 55, pp. 183–237.

[5] Bulatov V.V., Vladimirov Yu.V. Far fields of internal gravity waves in stratified media

of variable depth.

Russ. J. Math. Phys

., 2010, vol. 17, no. 4, pp. 400–412.

[6] Bulatov V.V., Vladimirov Yu.V. Wave dynamics of stratified mediums with variable

depth: exact solutions and asymptotic representations.

IUTAM Procedia

, 2013, vol. 8,

pp. 229–237.

[7] Dobrokhotov

S.Yu.

, Lozhnikov D.A., Vargas C.A. Asymptotics of waves on the

shallow water generated by spatially-localized sources and trapped by underwater

ridges.

Russ. J. Mat. Phys

., 2013, vol. 20, pp. 11–24.

[8] Yang-Yih Chen, Chen G.Y., Chia-Hao Lin, Chiu-Long Chou. Progressive waves in

real fluids over a rigid permeable bottom.

Coastal Engineering Journal

., 2010, vol. 52

(1), pp. 17–42.

[9] Hsu M.K., Liu A.K., Liu C. A study of internal waves in the China Seas and Yellow

Sea using SAR.

Continental Shelf Research

, 2000, vol. 20, pp. 389–410.

[10] Grue J., Jensen A. Orbital velocity and breaking in steep random gravity waves.

J.

of Geophysical Research

, 2012, vol. 117, pp. C07–C013.

[11] Bulatov V.V., Vladimirov Yu.V. The Far-Field of Internal Gravity Waves in

Inhomogeneous and Nonstationary Stratified Media.

Fundam. Prikl. Gidrofiz

., 2013,

vol. 6, no. 2, pp. 55–70 (in Russ.).

[12] Vladimirov Yu.V. Explicit Solution for Monochromatic Standing Internal Waves in

the Wedge.

Izvestiya RAN

.

Fluid Mechanics

, 2012, no. 5, pp. 73–79 (in Russ.).

[13] White R.B. Asymptotic analysis of differential equations. London: Imperial College

Press, 2005.

[14] Abramowitz M., Stegun I.A. Handbook of mathematical functions (Reprint of the

1972 ed.). N.Y., Dover Publications Inc., 1992.

[15] Watson G.N. A treatise on the theory of Bessel functions (Reprint of the 2nd ed.).

Cambridge, Cambridge University Press, 1995.

[16] Abdilghanie A.M., Diamessis P.J. The internal gravity wave field emitted by a stably

stratified turbulent wake.

Journal of Fluid Mechanics

, 2013, vol. 720, pp. 104–139.

[17] Mauge R., Gerkema T. Generation of weakly nonlinear nonhydrostatic internal tides

over large topography: a multi-modal approach.

Nonlinear Processes Geophysics

,

2008, vol. 15, pp. 233–244.

[18] Rees T., Lamb K.G., Poulin F.J. Asymptotic analysis of the forces internal gravity

waves equation.

SIAM Journal on Applied Mathematics

, 2012, vol. 72 (4), pp. 1041–

1060.

Статья поступила в редакцию 25.06.2014

ISSN 1812-3368. Вестник МГТУ им. Н.Э. Баумана. Сер. “Естественные науки”. 2015. № 3

75