Background Image
Previous Page  19 / 21 Next Page
Information
Show Menu
Previous Page 19 / 21 Next Page
Page Background

REFERENCES

[1] Grigolyuk E.I., Kulikov G.M. The Generalized Model of the Mechanics of Thin-

Walled Structures Made of Composite Materials.

Composite Mechanics and Design

,

1988, no. 4, pp. 698–704 (in Russ.).

[2] Zveryaev E.M., Makarov G.I. The General Method of Constructing Theories Like

Tymoshenko.

Prikl. Mat. Mekh

. [J. Appl. Math. Mech.], 2008, vol. 72, iss. 2, pp. 308–

321 (in Russ.).

[3] Zveryaev E.M. Analysis of the Hypotheses Used in the Theory of Beams and Slabs.

Prikl. Mat. Mekh

. [J. Appl. Math. Mech.], 2003, vol. 67, iss. 3, pp. 472–483 (in

Russ.).

[4] Sheshenin S.V. Asymptotic analysis for periodic in plane plates.

Izv. RAN. MTT

[Proc. of the Russ. Acad. Sci. Mech. Rigid Body], 2006, no. 6, pp. 71–79 (in Russ.).

[5] Sheshenin S.V., Khodos O.A. Effective Stiffness of Corrugated Plates.

Vychislitel’naya mekhanika sploshnoi sredy

[Computational Continuum Mechanics],

2011, vol. 4, no. 2, pp. 128–139 (in Russ.).

[6] Kohn R.V., Vogelyus M. A new model of thin plates with rapidly varying thickness.

Int. J. Solids and Struct.

, 1984, vol. 20, no. 4, pp. 333–350.

[7] Panasenko G.P., Reztsov M.V. Averaging the Three-Dimensional Problem of

Elasticity Theory in an Inhomogeneous Plate.

Dokl. AN SSSR

[Reports of Acad.

Sci. USSR], 1987, vol. 294, no. 5, pp. 1061–1065 (in Russ.).

[8] Levinski T., Telega J.J. Plates, laminates and shells. Asymptotic analysis and

homogenization. Singapore, London, World Sci. Publ., 2000, 739 p.

[9] Kolpakov A.G. Homogenized models for thin-walled nonhomogeneous structures

with initial stresses. Springer-Verlag, Berlin, Heidelberg, 2004, 228 p.

[10] Dimitrienko Yu.I. Asymptotic Theory of Multilayer Thin Plates.

Vestn. Mosk. Gos.

Tekh. Univ. im. N.E. Baumana, Estestv. Nauki

[Herald of the Bauman Moscow State

Tech. Univ., Nat. Sci.], 2012, no. 3, pp. 86–100 (in Russ.).

[11] Dimitrienko Yu.I.,

Yakovlev D.O. Asymptotic theory of thermoelasticity of

multilayer composite plates.

Mekhanika kompozitsionnykh materialov i konstruktsiy

[Journal on Composite Mechanics and Design], 2014, vol. 20, no. 2, pp. 259–282 (in

Russ.).

[12] Dimitrienko Yu.I., Gubareva E.A., Sborschikov S.V. Asymptotic theory of

constructive-orthotropic plates with two-periodic structure.

Mat. modelirovanie i

chislennye metody

[Math. Modeling and Computational Methods], 2014, no. 1,

pp. 36–57 (in Russ.).

[13] Dimitrienko Yu.I., Fedonyuk N.N., Gubareva E.A., Sborschikov S.V.,

Prozorovskiy A.A., Erasov V.S., Yakovlev N.O. Modeling and development of three-

layer sandwich composite materials with honecomb core.

Vestn. Mosk. Gos. Tekh.

Univ. im. N.E. Baumana, Estestv. Nauki

[Herald of the Bauman Moscow State Tech.

Univ., Nat. Sci.], 2014, no. 5, pp. 66–82 (in Russ.).

[14] Dimitrienko Yu.I., Gubareva E.A., Fedonyuk N.N., Yakovlev D.O. A method of

calculation of energy dissipation in hybrid composite structures.

Izv. Vyssh. Uchebn.

Zaved., Mashinostr.

[Proc. Univ., Mech. Eng.], 2014, no. 11, pp. 23–34 (in Russ.).

[15] Dimitrienko Yu.I., Gubareva E.A., Fedonyuk N.N., Sborschikov S.V. Мodeling

of elasic-dissipative properties of laminated fibrous composites.

Jelektr.

nauchno-tehn. Izd. “Inzhenernyy zhurnal: nauka i innovacii”

[El. Sc.-

Techn. Publ. “Eng. J.: Science and Innovation”], 2014, no. 4 (28). URL:

http://engjournal.ru/catalog/mathmodel/material/1234.html

[16] Dimitrienko Yu.I., Gubareva E.A., Sborschikov S.V., Fedonyuk N.N. Simulation

of Viscoelastic Properties of Fibrous Laminated Polymer Composite Materials.

Jelektr. Nauchno-Tehn. Izd. “Nauka i obrazovanie”

[El. Sc.-Tech. Publ. “Science

and Education”], 2014, no. 11. URL:

http://technomag.bmstu.ru/doc/734246.html

(accessed 19.01.2015). DOI: 10.7463/1114.0734246

ISSN 1812-3368. Вестник МГТУ им. Н.Э. Баумана. Сер. “Естественные науки”. 2015. № 4

85