REFERENCES
[1] Grigolyuk E.I., Kulikov G.M. The Generalized Model of the Mechanics of Thin-
Walled Structures Made of Composite Materials.
Composite Mechanics and Design
,
1988, no. 4, pp. 698–704 (in Russ.).
[2] Zveryaev E.M., Makarov G.I. The General Method of Constructing Theories Like
Tymoshenko.
Prikl. Mat. Mekh
. [J. Appl. Math. Mech.], 2008, vol. 72, iss. 2, pp. 308–
321 (in Russ.).
[3] Zveryaev E.M. Analysis of the Hypotheses Used in the Theory of Beams and Slabs.
Prikl. Mat. Mekh
. [J. Appl. Math. Mech.], 2003, vol. 67, iss. 3, pp. 472–483 (in
Russ.).
[4] Sheshenin S.V. Asymptotic analysis for periodic in plane plates.
Izv. RAN. MTT
[Proc. of the Russ. Acad. Sci. Mech. Rigid Body], 2006, no. 6, pp. 71–79 (in Russ.).
[5] Sheshenin S.V., Khodos O.A. Effective Stiffness of Corrugated Plates.
Vychislitel’naya mekhanika sploshnoi sredy
[Computational Continuum Mechanics],
2011, vol. 4, no. 2, pp. 128–139 (in Russ.).
[6] Kohn R.V., Vogelyus M. A new model of thin plates with rapidly varying thickness.
Int. J. Solids and Struct.
, 1984, vol. 20, no. 4, pp. 333–350.
[7] Panasenko G.P., Reztsov M.V. Averaging the Three-Dimensional Problem of
Elasticity Theory in an Inhomogeneous Plate.
Dokl. AN SSSR
[Reports of Acad.
Sci. USSR], 1987, vol. 294, no. 5, pp. 1061–1065 (in Russ.).
[8] Levinski T., Telega J.J. Plates, laminates and shells. Asymptotic analysis and
homogenization. Singapore, London, World Sci. Publ., 2000, 739 p.
[9] Kolpakov A.G. Homogenized models for thin-walled nonhomogeneous structures
with initial stresses. Springer-Verlag, Berlin, Heidelberg, 2004, 228 p.
[10] Dimitrienko Yu.I. Asymptotic Theory of Multilayer Thin Plates.
Vestn. Mosk. Gos.
Tekh. Univ. im. N.E. Baumana, Estestv. Nauki
[Herald of the Bauman Moscow State
Tech. Univ., Nat. Sci.], 2012, no. 3, pp. 86–100 (in Russ.).
[11] Dimitrienko Yu.I.,
Yakovlev D.O. Asymptotic theory of thermoelasticity of
multilayer composite plates.
Mekhanika kompozitsionnykh materialov i konstruktsiy
[Journal on Composite Mechanics and Design], 2014, vol. 20, no. 2, pp. 259–282 (in
Russ.).
[12] Dimitrienko Yu.I., Gubareva E.A., Sborschikov S.V. Asymptotic theory of
constructive-orthotropic plates with two-periodic structure.
Mat. modelirovanie i
chislennye metody
[Math. Modeling and Computational Methods], 2014, no. 1,
pp. 36–57 (in Russ.).
[13] Dimitrienko Yu.I., Fedonyuk N.N., Gubareva E.A., Sborschikov S.V.,
Prozorovskiy A.A., Erasov V.S., Yakovlev N.O. Modeling and development of three-
layer sandwich composite materials with honecomb core.
Vestn. Mosk. Gos. Tekh.
Univ. im. N.E. Baumana, Estestv. Nauki
[Herald of the Bauman Moscow State Tech.
Univ., Nat. Sci.], 2014, no. 5, pp. 66–82 (in Russ.).
[14] Dimitrienko Yu.I., Gubareva E.A., Fedonyuk N.N., Yakovlev D.O. A method of
calculation of energy dissipation in hybrid composite structures.
Izv. Vyssh. Uchebn.
Zaved., Mashinostr.
[Proc. Univ., Mech. Eng.], 2014, no. 11, pp. 23–34 (in Russ.).
[15] Dimitrienko Yu.I., Gubareva E.A., Fedonyuk N.N., Sborschikov S.V. Мodeling
of elasic-dissipative properties of laminated fibrous composites.
Jelektr.
nauchno-tehn. Izd. “Inzhenernyy zhurnal: nauka i innovacii”
[El. Sc.-
Techn. Publ. “Eng. J.: Science and Innovation”], 2014, no. 4 (28). URL:
http://engjournal.ru/catalog/mathmodel/material/1234.html[16] Dimitrienko Yu.I., Gubareva E.A., Sborschikov S.V., Fedonyuk N.N. Simulation
of Viscoelastic Properties of Fibrous Laminated Polymer Composite Materials.
Jelektr. Nauchno-Tehn. Izd. “Nauka i obrazovanie”
[El. Sc.-Tech. Publ. “Science
and Education”], 2014, no. 11. URL:
http://technomag.bmstu.ru/doc/734246.html(accessed 19.01.2015). DOI: 10.7463/1114.0734246
ISSN 1812-3368. Вестник МГТУ им. Н.Э. Баумана. Сер. “Естественные науки”. 2015. № 4
85