Previous Page  15 / 16 Next Page
Information
Show Menu
Previous Page 15 / 16 Next Page
Page Background

[12] Makarov A.M., Lunyova L.A., Makarov K.A. Concerning Structure of Simultaneous

Equations of the Classical Electrodynamics.

Vestn. Mosk. Gos. Tekh. Univ.

im. N.E. Baumana, Estestv. Nauki

[Herald of the Bauman Moscow State Tech. Univ.,

Nat. Sci.], 2014, no. 3, pp. 39–52 (in Russ.).

[13] Mansuripur M. On the Foundational Equations of the Classical Electrodynamics.

Resonance

, 2013, no. 2, pp. 130–150.

[14] Ponomarev Yu.I. The Elusion of Maxwell Equations from the State Function. Charge

State Function and Its Connection with the Charge Conservation Law.

Uspekhi

sovremennogo estestvoznaniya

[Advances in Current Natural Sciences], 2009, no. 1,

pp. 6–9.

[15] Lutfullin M. Symmetry Reduction of Nonlinear Equations of Classical

Electrodynamics.

Symmetry in Nonlinear Mathematical Physics

, 1997, vol. 1.

[16] Lu Q.Z., Norris S., Su Q., Grobe R. Self-interactions as Predicted by the Dirac –

Maxwell Equations.

Phys. Rev. A

, 2014, vol. 90, p. 034101.

[17] Etkin V.A. Energodynamic Derivation of Maxwell’s Equations.

Dokl. nezavisimykh

avtorov. Ser. Fizika i astronomiya

[The Papers of Independent Authors, physics,

astronomy], 2013, iss. 23, pp. 165–174 (in Russ.).

[18] Etkin V.A. Thermodynamic Derivation of Maxwell’s Equations. Available

at:

http://www.etkin.iri-as.org/napravlen/09elektr/Termod

%20vyvod%20uravn%

20Maxvela.pdf (accessed 15.05.2015).

[19] Planck Max. Introduction to Theoretical Physics: Theory of electricity and

magnetism, vol. 3. Macmillan, 1932. 247 p. (Russ. ed.: Plank M. Vvedenie v

teoreticheskuyu fiziku. Teoriya elektrichestva i magnetizma. Moscow, URSS Publ.,

2004. 184 p.).

[20] Sindelka M. Derivation of Coupled Maxwell – Schredinger Equations Describe

Matter-laser Interaction from First Principles of Quantum Electrodynamics.

Phys.

Rev. A

, 2010, vol. 81, p. 033833.

[21] Vorontsov A.S., Kozlov V.I., Markov M.B. On the Maxwell’s equations in the

self-time. Preprint, Inst. Appl. Math., Russian Academy of Science. Available at:

http://keldysh.ru/papers/2005/prep28/prep2005_28.html

(accessed 05.05.2015).

[22] Kulyabov D.S., Korolkova A.V., Sevastyanov L.A. The Simplest Geometrization

of Maxwell’s Equations.

Vestn. RUDN. Ser. Matematika, informatika, fizika

, 2014,

no. 2, pp. 115–172 (in Russ.).

[23] Darrigol O. James MacCullagh‘s Ether: an Optical route to Maxwell Equations?

Eur.

Phys. J. H.

, 2010, vol. 35, pp. 133–172. DOI: 10.1140/epjh/e2010-00009-3

[24] Kusnetsov I.V., Zotov K.H. Improving Accuracy of Positioning Mobile Station

based on the Calculation of Static Parameters Electromagnetic Field with Maxwell’s

Equations.

Electrical and Data Processing Facilities System

, 2013, vol. 9, no. 1,

pp. 89–92.

[25] Galev R.V., Kovalev O.B. About the Use Maxwell Equations in Numerical

Simulation of Interaction of Laser Radiation with Materials.

Vestnik NGU. Ser. Fizika

[Vestnik of NSU: Physics Series], 2014, vol. 9, pp. 53–64 (in Russ.).

[26] Alekseev G.V., Brizitskiy R.V. Theoretical analysis of boundary control extremal

problems for Maxwell’s equations

. Sib. Zh. Ind. Mat.,

2011, vol. 14, no. 1 (45),

pp. 3–16 (in Russ.).

[27] Barbas A., Velarde P. Development of a Godunov Method for Maxwell’s Equations

with Adaptive Mesh Refinement.

Journal of Computational Physics

, 2015, vol. 300,

pp. 188–201. DOI: 10.1016/j.jcp.2015.07.048

[28] Markel V., Schotland J.C. Homogenization of Maxwell’s Equations

in Periodic Composites: Boundary Effects and Dispersion Relation.

Phys. Rev. E

, 2012, vol. 85, pp. 066603-1–066603-23. Available at:

http://journals.aps.org/pre/pdf/10.1103/PhysRevE.85.066603

DOI: 10.1103/PhysRevE.85.066603

ISSN 1812-3368. Вестник МГТУ им. Н.Э. Баумана. Сер. “Естественные науки”. 2016. № 1

59