[12] Makarov A.M., Lunyova L.A., Makarov K.A. Concerning Structure of Simultaneous
Equations of the Classical Electrodynamics.
Vestn. Mosk. Gos. Tekh. Univ.
im. N.E. Baumana, Estestv. Nauki
[Herald of the Bauman Moscow State Tech. Univ.,
Nat. Sci.], 2014, no. 3, pp. 39–52 (in Russ.).
[13] Mansuripur M. On the Foundational Equations of the Classical Electrodynamics.
Resonance
, 2013, no. 2, pp. 130–150.
[14] Ponomarev Yu.I. The Elusion of Maxwell Equations from the State Function. Charge
State Function and Its Connection with the Charge Conservation Law.
Uspekhi
sovremennogo estestvoznaniya
[Advances in Current Natural Sciences], 2009, no. 1,
pp. 6–9.
[15] Lutfullin M. Symmetry Reduction of Nonlinear Equations of Classical
Electrodynamics.
Symmetry in Nonlinear Mathematical Physics
, 1997, vol. 1.
[16] Lu Q.Z., Norris S., Su Q., Grobe R. Self-interactions as Predicted by the Dirac –
Maxwell Equations.
Phys. Rev. A
, 2014, vol. 90, p. 034101.
[17] Etkin V.A. Energodynamic Derivation of Maxwell’s Equations.
Dokl. nezavisimykh
avtorov. Ser. Fizika i astronomiya
[The Papers of Independent Authors, physics,
astronomy], 2013, iss. 23, pp. 165–174 (in Russ.).
[18] Etkin V.A. Thermodynamic Derivation of Maxwell’s Equations. Available
at:
http://www.etkin.iri-as.org/napravlen/09elektr/Termod%20vyvod%20uravn%
20Maxvela.pdf (accessed 15.05.2015).
[19] Planck Max. Introduction to Theoretical Physics: Theory of electricity and
magnetism, vol. 3. Macmillan, 1932. 247 p. (Russ. ed.: Plank M. Vvedenie v
teoreticheskuyu fiziku. Teoriya elektrichestva i magnetizma. Moscow, URSS Publ.,
2004. 184 p.).
[20] Sindelka M. Derivation of Coupled Maxwell – Schredinger Equations Describe
Matter-laser Interaction from First Principles of Quantum Electrodynamics.
Phys.
Rev. A
, 2010, vol. 81, p. 033833.
[21] Vorontsov A.S., Kozlov V.I., Markov M.B. On the Maxwell’s equations in the
self-time. Preprint, Inst. Appl. Math., Russian Academy of Science. Available at:
http://keldysh.ru/papers/2005/prep28/prep2005_28.html(accessed 05.05.2015).
[22] Kulyabov D.S., Korolkova A.V., Sevastyanov L.A. The Simplest Geometrization
of Maxwell’s Equations.
Vestn. RUDN. Ser. Matematika, informatika, fizika
, 2014,
no. 2, pp. 115–172 (in Russ.).
[23] Darrigol O. James MacCullagh‘s Ether: an Optical route to Maxwell Equations?
Eur.
Phys. J. H.
, 2010, vol. 35, pp. 133–172. DOI: 10.1140/epjh/e2010-00009-3
[24] Kusnetsov I.V., Zotov K.H. Improving Accuracy of Positioning Mobile Station
based on the Calculation of Static Parameters Electromagnetic Field with Maxwell’s
Equations.
Electrical and Data Processing Facilities System
, 2013, vol. 9, no. 1,
pp. 89–92.
[25] Galev R.V., Kovalev O.B. About the Use Maxwell Equations in Numerical
Simulation of Interaction of Laser Radiation with Materials.
Vestnik NGU. Ser. Fizika
[Vestnik of NSU: Physics Series], 2014, vol. 9, pp. 53–64 (in Russ.).
[26] Alekseev G.V., Brizitskiy R.V. Theoretical analysis of boundary control extremal
problems for Maxwell’s equations
. Sib. Zh. Ind. Mat.,
2011, vol. 14, no. 1 (45),
pp. 3–16 (in Russ.).
[27] Barbas A., Velarde P. Development of a Godunov Method for Maxwell’s Equations
with Adaptive Mesh Refinement.
Journal of Computational Physics
, 2015, vol. 300,
pp. 188–201. DOI: 10.1016/j.jcp.2015.07.048
[28] Markel V., Schotland J.C. Homogenization of Maxwell’s Equations
in Periodic Composites: Boundary Effects and Dispersion Relation.
Phys. Rev. E
, 2012, vol. 85, pp. 066603-1–066603-23. Available at:
http://journals.aps.org/pre/pdf/10.1103/PhysRevE.85.066603DOI: 10.1103/PhysRevE.85.066603
ISSN 1812-3368. Вестник МГТУ им. Н.Э. Баумана. Сер. “Естественные науки”. 2016. № 1
59