Previous Page  10 / 12 Next Page
Information
Show Menu
Previous Page 10 / 12 Next Page
Page Background

22.

Colosqui C.E.

,

Kavousanakis M.E.

,

Papathanasiou A.G.

,

Kevrekidis I.G

. Mesoscopic

model for microscale hydrodynamics and interfacial phenomena: slip, films, and

contact-angle hysteresis // Physical Review E — Statistical, Nonlinear, and Soft

Matter Physics. 2013. Vol. 87. No. 1. Р. 013302.

23.

Nikolov A.

,

Wasan D

. Wetting-dewetting films: the role of structural forces //

Advances in Colloid and Interface Science. 2014. Vol. 206. Р. 207–221.

24.

Boinovich L.

,

Emelyanko A

. The prediction of wettability of curved surfaces on the

basis of the isotherms of the disjoining pressure // Col. Surf. A: Physicochem. Eng.

Aspects. 2011. Vol. 383. Р. 10–16.

25.

Popescu M.N.

,

Oshanin G.

,

Dietrich S.

,

Cazabat A.-M

. Precursor films in wetting

phenomena // J. Phys.: Condens. Matter. 2012. Vol. 24. Р. 243102.

26.

Moulton D.E.

,

Lega J

. Effect of disjoining pressure in a thin film equation with

nonuniform forcing // European J. of Applied Math. 2013. Vol. 24. P. 887–920.

27.

Snoeijer J.H.

,

Andreotti B.

Moving Contact Lines: Scales, Regimes, and Dynamical

Transitions // Annu. Rev. Fluid Mech. 2013. Vol. 45. P. 269–292.

28.

David N. Sibley

,

Andreas Nold

,

Nikos Savva

,

Serafim Kalliadasis

. A comparison of

slip, disjoining pressure, and interface formation models for contact line motion

through asymptotic analysis of thin two-dimensional droplet spreading // J. of

Engineering Math. August 2014.

29.

Kaustav Chaudhury

,

Palash V. Acharya

,

Suman Chakraborty

. Influence of disjoining

pressure on the dynamics of steadily moving long bubbles inside narrow cylindrical

capillaries // Phys. Rev. E. 2014. Vol. 89. P. 053002.

30.

Базаров И.П.

Термодинамика. СПб.: Лань, 2010. 377 с.

31.

Ruckenstein E.

,

Dunn C.S

. Slip velocity during Wetting of Solids // J. Col. Interface

Sci. 1977. Vol. 59. No. 1. P. 135–138.

REFERENCES

[1] Myshkis A.D., ed., Babskiy V.G., Zhukov

M.Yu

., Kopachevskiy N.D.,

Slobozhanin L.A., Tyuptsov A.D. Metody resheniya zadach gidromekhaniki dlya

usloviy nevesomosti [Methods for solving problems in fluid mechanics for the

conditions of weightlessness]. Kiev, Naukova dumka Publ., 1992. 592 p.

[2] Pukhnachev V.V., Solonnikov V.A. On the question of dynamic contact angle.

Prikl.

Mat. Mekh.

[J. Appl. Math. Mech.], 1982, vol. 46, no. 6, pp. 961–971 (in Russ.).

[3] Deryagin B.V., Churaev N.V. Smachivayushchie plenki [Wetting films]. Moscow,

Nauka Publ., 1984. 160 p.

[4] Deryagin B.V., Churaev N.V., Muler V.M. Poverkhnostnye sily [Surface forces].

Moscow, Nauka Publ., 1985. 399 p.

[5] Romanov A.S. Method of hydrodynamic description of the spreading of a partially

wetting liquid over a flat solid surface.

Colloid Journal

, 1990, vol. 52, no. 1,

pp. 72–78.

[6] Romanov A.S., Semikolenov A.V. Depressurized capillary filling in the asymptotic

theory of wetting.

Jelektr. nauchno-tekh. izd. “Inzhenernyy zhurnal: nauka i

innovacii”

[El. Sc.-Tech. Publ. “Eng. J.: Science and Innovation”], 2013, iss. 4.

Available at:

http://engjournal.ru/catalog/machin/rocket/699.html

[7] De Gennes P.G. Wetting: Statics and Dynamics.

Reviews of Modern Physics

, 1985,

vol. 57, pp. 827–863. DOI: 10.1103/RevModPhys.57.827

[8] Deryagin B.V., Churaev N.V., Ovcharenko F.D. et al.

Voda v dispersnykh sistemakh

[Water in disperse systems]. Moscow, Khimiya Publ., 1989. 288 p.

[9] Miller C.A., Rukenshtein E. The Origin of Flow during Wetting of Solids.

J. Col.

Interface Sci.

, 1974, vol. 48, no. 3, pp. 368–373.

[10] Del Cerro M.C.G., Jameson G. Theory for equilibrium contact angle between a gas,

a liquid and solid.

J. Chem. Soc. Faraday Trans

.

I

, 1976, vol. 72, pp. 883–895.

ISSN 1812-3368. Вестник МГТУ им. Н.Э. Баумана. Сер. “Естественные науки”. 2016. № 1

131