22.
Colosqui C.E.
,
Kavousanakis M.E.
,
Papathanasiou A.G.
,
Kevrekidis I.G
. Mesoscopic
model for microscale hydrodynamics and interfacial phenomena: slip, films, and
contact-angle hysteresis // Physical Review E — Statistical, Nonlinear, and Soft
Matter Physics. 2013. Vol. 87. No. 1. Р. 013302.
23.
Nikolov A.
,
Wasan D
. Wetting-dewetting films: the role of structural forces //
Advances in Colloid and Interface Science. 2014. Vol. 206. Р. 207–221.
24.
Boinovich L.
,
Emelyanko A
. The prediction of wettability of curved surfaces on the
basis of the isotherms of the disjoining pressure // Col. Surf. A: Physicochem. Eng.
Aspects. 2011. Vol. 383. Р. 10–16.
25.
Popescu M.N.
,
Oshanin G.
,
Dietrich S.
,
Cazabat A.-M
. Precursor films in wetting
phenomena // J. Phys.: Condens. Matter. 2012. Vol. 24. Р. 243102.
26.
Moulton D.E.
,
Lega J
. Effect of disjoining pressure in a thin film equation with
nonuniform forcing // European J. of Applied Math. 2013. Vol. 24. P. 887–920.
27.
Snoeijer J.H.
,
Andreotti B.
Moving Contact Lines: Scales, Regimes, and Dynamical
Transitions // Annu. Rev. Fluid Mech. 2013. Vol. 45. P. 269–292.
28.
David N. Sibley
,
Andreas Nold
,
Nikos Savva
,
Serafim Kalliadasis
. A comparison of
slip, disjoining pressure, and interface formation models for contact line motion
through asymptotic analysis of thin two-dimensional droplet spreading // J. of
Engineering Math. August 2014.
29.
Kaustav Chaudhury
,
Palash V. Acharya
,
Suman Chakraborty
. Influence of disjoining
pressure on the dynamics of steadily moving long bubbles inside narrow cylindrical
capillaries // Phys. Rev. E. 2014. Vol. 89. P. 053002.
30.
Базаров И.П.
Термодинамика. СПб.: Лань, 2010. 377 с.
31.
Ruckenstein E.
,
Dunn C.S
. Slip velocity during Wetting of Solids // J. Col. Interface
Sci. 1977. Vol. 59. No. 1. P. 135–138.
REFERENCES
[1] Myshkis A.D., ed., Babskiy V.G., Zhukov
M.Yu., Kopachevskiy N.D.,
Slobozhanin L.A., Tyuptsov A.D. Metody resheniya zadach gidromekhaniki dlya
usloviy nevesomosti [Methods for solving problems in fluid mechanics for the
conditions of weightlessness]. Kiev, Naukova dumka Publ., 1992. 592 p.
[2] Pukhnachev V.V., Solonnikov V.A. On the question of dynamic contact angle.
Prikl.
Mat. Mekh.
[J. Appl. Math. Mech.], 1982, vol. 46, no. 6, pp. 961–971 (in Russ.).
[3] Deryagin B.V., Churaev N.V. Smachivayushchie plenki [Wetting films]. Moscow,
Nauka Publ., 1984. 160 p.
[4] Deryagin B.V., Churaev N.V., Muler V.M. Poverkhnostnye sily [Surface forces].
Moscow, Nauka Publ., 1985. 399 p.
[5] Romanov A.S. Method of hydrodynamic description of the spreading of a partially
wetting liquid over a flat solid surface.
Colloid Journal
, 1990, vol. 52, no. 1,
pp. 72–78.
[6] Romanov A.S., Semikolenov A.V. Depressurized capillary filling in the asymptotic
theory of wetting.
Jelektr. nauchno-tekh. izd. “Inzhenernyy zhurnal: nauka i
innovacii”
[El. Sc.-Tech. Publ. “Eng. J.: Science and Innovation”], 2013, iss. 4.
Available at:
http://engjournal.ru/catalog/machin/rocket/699.html[7] De Gennes P.G. Wetting: Statics and Dynamics.
Reviews of Modern Physics
, 1985,
vol. 57, pp. 827–863. DOI: 10.1103/RevModPhys.57.827
[8] Deryagin B.V., Churaev N.V., Ovcharenko F.D. et al.
Voda v dispersnykh sistemakh
[Water in disperse systems]. Moscow, Khimiya Publ., 1989. 288 p.
[9] Miller C.A., Rukenshtein E. The Origin of Flow during Wetting of Solids.
J. Col.
Interface Sci.
, 1974, vol. 48, no. 3, pp. 368–373.
[10] Del Cerro M.C.G., Jameson G. Theory for equilibrium contact angle between a gas,
a liquid and solid.
J. Chem. Soc. Faraday Trans
.
I
, 1976, vol. 72, pp. 883–895.
ISSN 1812-3368. Вестник МГТУ им. Н.Э. Баумана. Сер. “Естественные науки”. 2016. № 1
131