[11] Romanov A.S., Semikolenov A.V. A simulation of the hydrodynamics of the
disintegration of a thin film of partially wetting liquid.
Computational Mathematics
and Mathematical Physics
, 1995, vol. 35, no. 5, pp. 643–647.
[12] Romanov A.S., Semikolenov A.V. Simulation of spreading hydrodynamics for a
droplet of an incompletely wetting liquid under a horizontal force.
Computational
Mathematics and Mathematical Physics
, 1999, vol. 39, no. 7, pp. 1163–1167.
[13] Boryan Radoev, Klaus W. St¨uckelhuber, Roumen Tsekov, Philippe Letocart. Wetting
film dynamics and stability.
Col. Interface Sci. Ser. 3
, 2007, pp. 151–172.
[14] Bing Dai, L., Leal Gary, Redondo Antonio. Disjoining pressure for nonuniform thin
films.
Phys. Rev. E
, 2008, vol. 78, p. 061602.
[15] Aliev I.N., Yurchenko S.O. Nonlinear waves spreading over the nonviscous
conductive liquid surface in the electric field.
Izv. Akad. Nauk, Mekh. Zhidk. Gaza
[Fluid Dyn.], 2009, no. 5, pp. 137–148 (in Russ.).
[16] Aliev I.N., Yurchenko S.O. Perturbation transition of the charged interface of non-
miscible nonviscous liquids in the clearance between two electrodes.
Izv. Akad. Nauk,
Mekh. Zhidk. Gaza
[Fluid Dyn.], 2010, no. 5, pp. 156–166 (in Russ.).
[17] Saramago B. Thin liquid wetting films.
Current Opinion in Colloid & Interface
Science
, 2010, vol. 15, no. 5, pp. 330–340.
[18] Ren W., Hu D., E W. Continuum models for the contact line problem.
Physics of
Fluids
, 2010, vol. 22, no. 10, pp. 102103–102119.
[19] Ajoy Patra, Dipankar Bandyopadhyay, Gaurav Tomar, Ashutosh Sharma, Gautam
Biswas. Instability and dewetting of ultrathin solid viscoelastic films on homogeneous
and heterogeneous substrates.
Journal of Chemical Physics
, 2011, vol. 134, no. 6,
pp. 064705–064711.
[20] Boinovich L., Emelyanko A. Wetting and surface forces.
Adv. Colloid Interface Sci
.,
2011, vol. 165, pp. 60–69.
[21] Tsekov R., Toshev B.V. Capillary pressure of van der Waals liquid nanodrops.
Colloid
Journal
, 2012, vol. 74, no. 2, pp. 266–268.
[22]
Colosqui C.E.
,
Kavousanakis M.E.
,
Papathanasiou A.G.
,
Kevrekidis I.G
. Mesoscopic
model for microscale hydrodynamics and interfacial phenomena: slip, films, and
contact-angle hysteresis.
Physical Review E – Statistical, Nonlinear, and Soft Matter
Physics
, 2013, vol. 87, no. 1, p. 013302.
[23] Nikolov A., Wasan D. Wetting-dewetting films: the role of structural forces.
Advances
in Colloid and Interface Science
, 2014, vol. 206, pp. 207–221.
[24] Boinovich L., Emelyanko A. The prediction of wettability of curved surfaces on the
basis of the isotherms of the disjoining pressure.
Col. Surf. A: Physicochem. Eng.
Aspects
, 2011, vol. 383, pp. 10–16.
[25] Popescu M.N., Oshanin G., Dietrich S., Cazabat A.-M. Precursor films in wetting
phenomena.
J. Phys.: Condens. Matter
., 2012, vol. 24, p. 243102.
[26] Moulton D.E., Lega J. Effect of disjoining pressure in a thin film equation with
nonuniform forcing.
European J. of Applied Math
., 2013, vol. 24, pp. 887–920.
[27] Snoeijer J.H., Andreotti B. Moving Contact Lines: Scales, Regimes, and Dynamical
Transitions.
Annu. Rev. Fluid Mech
., 2013, vol. 45, pp. 269–292.
[28] David N. Sibley, Andreas Nold, Nikos Savva, Serafim Kalliadasis. A comparison of
slip, disjoining pressure, and interface formation models for contact line motion
through asymptotic analysis of thin two-dimensional droplet spreading.
J. of
Engineering Math
., 2014, August.
[29] Kaustav Chaudhury, Palash V. Acharya, Suman Chakraborty. Influence of disjoining
pressure on the dynamics of steadily moving long bubbles inside narrow cylindrical
capillaries.
Phys. Rev. E
, 2014, vol. 89, p. 053002.
[30] Bazarov I.P. Termodinamika [Thermodynamics]. St. Petersburg, Lan’ Publ., 2010.
377 p.
132
ISSN 1812-3368. Вестник МГТУ им. Н.Э. Баумана. Сер. “Естественные науки”. 2016. № 1