Previous Page  11 / 12 Next Page
Information
Show Menu
Previous Page 11 / 12 Next Page
Page Background

[11] Romanov A.S., Semikolenov A.V. A simulation of the hydrodynamics of the

disintegration of a thin film of partially wetting liquid.

Computational Mathematics

and Mathematical Physics

, 1995, vol. 35, no. 5, pp. 643–647.

[12] Romanov A.S., Semikolenov A.V. Simulation of spreading hydrodynamics for a

droplet of an incompletely wetting liquid under a horizontal force.

Computational

Mathematics and Mathematical Physics

, 1999, vol. 39, no. 7, pp. 1163–1167.

[13] Boryan Radoev, Klaus W. St¨uckelhuber, Roumen Tsekov, Philippe Letocart. Wetting

film dynamics and stability.

Col. Interface Sci. Ser. 3

, 2007, pp. 151–172.

[14] Bing Dai, L., Leal Gary, Redondo Antonio. Disjoining pressure for nonuniform thin

films.

Phys. Rev. E

, 2008, vol. 78, p. 061602.

[15] Aliev I.N., Yurchenko S.O. Nonlinear waves spreading over the nonviscous

conductive liquid surface in the electric field.

Izv. Akad. Nauk, Mekh. Zhidk. Gaza

[Fluid Dyn.], 2009, no. 5, pp. 137–148 (in Russ.).

[16] Aliev I.N., Yurchenko S.O. Perturbation transition of the charged interface of non-

miscible nonviscous liquids in the clearance between two electrodes.

Izv. Akad. Nauk,

Mekh. Zhidk. Gaza

[Fluid Dyn.], 2010, no. 5, pp. 156–166 (in Russ.).

[17] Saramago B. Thin liquid wetting films.

Current Opinion in Colloid & Interface

Science

, 2010, vol. 15, no. 5, pp. 330–340.

[18] Ren W., Hu D., E W. Continuum models for the contact line problem.

Physics of

Fluids

, 2010, vol. 22, no. 10, pp. 102103–102119.

[19] Ajoy Patra, Dipankar Bandyopadhyay, Gaurav Tomar, Ashutosh Sharma, Gautam

Biswas. Instability and dewetting of ultrathin solid viscoelastic films on homogeneous

and heterogeneous substrates.

Journal of Chemical Physics

, 2011, vol. 134, no. 6,

pp. 064705–064711.

[20] Boinovich L., Emelyanko A. Wetting and surface forces.

Adv. Colloid Interface Sci

.,

2011, vol. 165, pp. 60–69.

[21] Tsekov R., Toshev B.V. Capillary pressure of van der Waals liquid nanodrops.

Colloid

Journal

, 2012, vol. 74, no. 2, pp. 266–268.

[22]

Colosqui C.E.

,

Kavousanakis M.E.

,

Papathanasiou A.G.

,

Kevrekidis I.G

. Mesoscopic

model for microscale hydrodynamics and interfacial phenomena: slip, films, and

contact-angle hysteresis.

Physical Review E – Statistical, Nonlinear, and Soft Matter

Physics

, 2013, vol. 87, no. 1, p. 013302.

[23] Nikolov A., Wasan D. Wetting-dewetting films: the role of structural forces.

Advances

in Colloid and Interface Science

, 2014, vol. 206, pp. 207–221.

[24] Boinovich L., Emelyanko A. The prediction of wettability of curved surfaces on the

basis of the isotherms of the disjoining pressure.

Col. Surf. A: Physicochem. Eng.

Aspects

, 2011, vol. 383, pp. 10–16.

[25] Popescu M.N., Oshanin G., Dietrich S., Cazabat A.-M. Precursor films in wetting

phenomena.

J. Phys.: Condens. Matter

., 2012, vol. 24, p. 243102.

[26] Moulton D.E., Lega J. Effect of disjoining pressure in a thin film equation with

nonuniform forcing.

European J. of Applied Math

., 2013, vol. 24, pp. 887–920.

[27] Snoeijer J.H., Andreotti B. Moving Contact Lines: Scales, Regimes, and Dynamical

Transitions.

Annu. Rev. Fluid Mech

., 2013, vol. 45, pp. 269–292.

[28] David N. Sibley, Andreas Nold, Nikos Savva, Serafim Kalliadasis. A comparison of

slip, disjoining pressure, and interface formation models for contact line motion

through asymptotic analysis of thin two-dimensional droplet spreading.

J. of

Engineering Math

., 2014, August.

[29] Kaustav Chaudhury, Palash V. Acharya, Suman Chakraborty. Influence of disjoining

pressure on the dynamics of steadily moving long bubbles inside narrow cylindrical

capillaries.

Phys. Rev. E

, 2014, vol. 89, p. 053002.

[30] Bazarov I.P. Termodinamika [Thermodynamics]. St. Petersburg, Lan’ Publ., 2010.

377 p.

132

ISSN 1812-3368. Вестник МГТУ им. Н.Э. Баумана. Сер. “Естественные науки”. 2016. № 1