Previous Page  10 / 11 Next Page
Information
Show Menu
Previous Page 10 / 11 Next Page
Page Background

ISSN 1812-3368. Вестник МГТУ им. Н.Э. Баумана. Сер. «Естественные науки». 2016. № 3

25

19.

Фетисов Д.А.

Об одном методе решения терминальных задач для аффинных

систем // Наука и образование. МГТУ им. Н.Э. Баумана. Электрон. журнал.

2013. № 11. DOI: 10.7463/1113.0622543 URL:

http://technomag.bmstu.ru/

doc/622543.html

REFERENCES

[1] Varga A. On solving periodic differential matrix equations with applications to

periodic system norms computation.

44th IEEE Conference on Decision and

Control 2005

;

European Control Conference CDC-ECC '05

, 2005, pp. 6545–

6550.

[2] Kyrchei I

.

Explicit formulas for determinantal representations of the Drazin

inverse solutions of some matrix and differential matrix equations.

Applied

Mathematics and Computation

, 2013, vol. 219, iss. 14, pp. 7632–7644.

[3] Lang N., Mena H., Saak J. On the benefits of the

LDL factorization for large-

scale differential matrix equation solvers.

Linear Algebra and its Applications

,

2015, vol. 480, pp. 44–71.

[4] Mori T., Fukuma N., Kuwahara M. On the Lyapunov matrix differential equation.

IEEE Transactions on Automatic Control

, 1986, vol. 31, pp. 868–869.

[5] Davis J.M., Gravagne I.A., Marks R.J., Ramos A. Algebraic and dynamic

Lyapunov equations on time scales.

Proceedings 42nd Southeastern Symposium

on System Theory

, Tyler, TX, 2010, pp. 329–334.

[6] Zhang J., Liu J.

New estimates for the solution of the Lyapunov matrix

differential equation.

Electronic journal of linear algebra

, 2010, vol. 20,

pp. 6–19.

[7] Yongliang Zhu, Pagilla P.R. Bounds on the solution of the time-varying linear

matrix differential equation

H

( ) = ( ) ( ) ( ) ( ) ( ).

P t

A t P t P t A t Q t

43rd IEEE

Conference on Decision and Control

, 2004, vol. 5, pp. 5392–5396.

[8] Hai-Jun Peng, Zhi-Gang Wu, Wan-Xie Zhong. Fourier expansion based recursive

algorithms for periodic Riccati and Lyapunov matrix differential equations.

Journal of Computational and Applied Mathematics

, 2011, vol. 235, iss. 12,

pp. 3571–3588.

[9] Nguyen T., Gajic Z. Solving the matrix differential Riccati equation: a Lyapunov

equation approach.

IEEE Transactions on Automatic Control

, 2010. vol. 55,

iss. 1, pp. 191–194.

[10] Gajic Z., Koskie S., Coumarbatch C. On the singularly perturbed matrix

differential Riccati equation.

Proceedings IEEE Conference Decision and

Control

, 2005, pp. 3638–3644.

[11] Kittipeerachon K., Hori N., Tomita Y. Exact discretization of a matrix differential

Riccati equation with constant coefficients.

IEEE Transactions on Automatic

Control

, 2009, vol. 54, iss. 5, pp. 1065–1068.

[12] Garrett C.K., Ren-Cang Li. GIP integrators for Matrix Riccati Differential

Equations.

Applied Mathematics and Computation

, 2014, vol. 241, pp. 283–297.

[13] Verde-Star L. On linear matrix differential equations.

Advances in Applied

Mathematics

, 2007, vol. 39, iss. 3, pp. 329–344.

[14] Bin Z., Guangren D. Closed form solutions for matrix linear systems using

double matrix exponential functions.

Control Conference CCC-2007

, 2007,

pp. 123–127.

[15] Ince E.L. Ordinary differential equations. London, N.Y., Longmans, Green and

Co., 1927. 558 p.

[16] Hartman P. Ordinary differential equation. N.Y., London, Sydney, John Wiley &

Sons, 1964. 612 p.