Previous Page  9 / 11 Next Page
Information
Show Menu
Previous Page 9 / 11 Next Page
Page Background

24

ISSN 1812-3368. Вестник МГТУ им. Н.Э. Баумана. Сер. «Естественные науки». 2016. № 3

ЛИТЕРАТУРА

1.

Varga A.

On solving periodic differential matrix equations with applications to pe-

riodic system norms computation // 44th IEEE Conference on Decision and Con-

trol 2005 and 2005 European Control Conference CDC-ECC '05. 2005. P. 6545–

6550.

2.

Kyrchei I.

Explicit formulas for determinantal representations of the Drazin inverse

solutions of some matrix and differential matrix equations // Applied Mathematics

and Computation. 2013. Vol. 219. Iss. 14. P. 7632–7644.

3.

Lang N., Mena H., Saak J.

On the benefits of the LDL factorization for large-scale

differential matrix equation solvers // Linear Algebra and its Applications. 2015.

Vol. 480. P. 44–71.

4.

Mori T., Fukuma N., Kuwahara M.

On the Lyapunov matrix differential equation //

IEEE Transactions on Automatic Control. 1986. Vol. 31. P. 868–869.

5.

Davis J.M., Gravagne I.A., Marks R.J., Ramos A.

Algebraic and dynamic Lyapun-

ov equations on time scales // Proceedings 42nd Southeastern Symposium on Sys-

tem Theory, Tyler, TX. 2010. P. 329–334.

6.

Zhang J., Liu J.

New estimates for the solution of the Lyapunov matrix differential

equation // Electronic journal of linear algebra. 2010. Vol. 20.

P. 6–19.

7.

Yongliang Zhu, Pagilla P.R.

Bounds on the solution of the time-varying linear ma-

trix differential equation

H

( ) = ( ) ( ) ( ) ( ) ( )

P t

A t P t P t A t Q t

// 43rd IEEE Con-

ference on Decision and Control. 2004. Vol. 5. P. 5392–5396.

8.

Hai-Jun Peng, Zhi-Gang Wu, Wan-Xie Zhong.

Fourier expansion based recursive

algorithms for periodic Riccati and Lyapunov matrix differential equations // Jour-

nal of Computational and Applied Mathematics. 2011. Vol. 235. Iss. 12. P. 3571–

3388.

9.

Nguyen T., Gajic Z.

Solving the matrix differential Riccati equation: a Lyapunov

equation approach // IEEE Transactions on Automatic Control. 2010. Vol. 55.

Iss. 1. P. 191–194.

10.

Gajic Z., Koskie S., Coumarbatch C.

On the singularly perturbed matrix differen-

tial Riccati equation // Proceedings IEEE Conference Decision and Control. 2005.

P. 3638–3644.

11.

Kittipeerachon K., Hori N., Tomita Y.

Exact discretization of a matrix differential

Riccati equation with constant coefficients // IEEE Transactions on Automatic

Control. 2009. Vol. 54. Iss. 5. P. 1065–1068.

12.

Garrett C.K., Ren-Cang Li.

GIP integrators for Matrix Riccati Differential Equa-

tions // Applied Mathematics and Computation. 2014. Vol. 241. P. 283–297.

13.

Verde-Star L.

On linear matrix differential equations // Advances in Applied

Mathematics. 2007. Vol. 39. Iss. 3. P. 329–344.

14.

Bin Z., Guangren D.

Closed form solutions for matrix linear systems using double

matrix exponential functions // Control Conference CCC-2007. 2007. P. 123–127.

15.

Айнс Э.Л.

Обыкновенные дифференциальные уравнения. Харьков: Гос.-научно-

техническое изд-во Украины, 1939. 719 c.

16.

Хартман Ф.

Обыкновенные дифференциальные уравнения. М.: Мир, 1970.

720 с.

17.

Коддингтон Э.А., Левинсон Н.

Теория обыкновенных дифференциальных

уравнений. М.: Издательство иностранной литературы, 1958. 474 с.

18.

Фетисов Д.А.

Решение терминальных задач для многомерных аффинных си-

стем на основе преобразования к квазиканоническому виду // Вестник МГТУ

им. Н.Э. Баумана. Сер. Естественные науки. 2014. № 5. С. 16–31.