Р.С. Исмагилов, Л.E. Филиппова
20
ISSN 1812-3368. Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки. 2017. № 2
PROBABILISTIC ERROR ESTIMATION IN APPROXIMATE INTEGRATION
FORMULAS FOR MULTIVARIABLE FUNCTIONS
R.S. Ismagilov
1
ismagil@bmstu.ruL.E. Filippova
2
1
Bauman Moscow State Technical University, Moscow, Russian Federation
2
Higher School of Economics Tikhonov Moscow Institute of Electronics and Mathematics,
Moscow, Russian Federation
Abstract
Keywords
The study examines the problem of approximate integra-
tion of multivariable functions. These functions are taken
from the space with Gaussian measure. According to it, we
calculated the average value of the integral standard devia-
tion from the integral sum. The paper gives the vanishing
order for the standard deviation depending on the parame-
ters that define the integral sum. We obtained probabilistic
estimates of approximate integration errors
Approximate integration, Gaussian
measure, multivariable function,
probabilistic estimates
REFERENCES
[1] Ermakov S.M. Metody Monte-Karlo i smezhnye voprosy [Monte-Carlo methods and
neighbouring problems]. Moscow, Nauka Publ., 1971. 472 p.
[2]
Sul'din A.V. Wiener measure and its applications to approximation methods. I.
Izvestiya
vysshikh uchebnykh zavedeniy. Matematika
, 1959, no. 6, pp. 145–158 (in Russ.).
[3]
Smale S. On the efficiency of algoritms of analysis.
Bulletin of the AMS
, 1985, vol. 13,
no. 2, pp. 87–121. Available at:
http://projecteuclid.org/euclid.bams/1183552689[4]
Larkin F.M. Gaussian measures in Hilbert space and applications in numerical analysis.
Rocky
Mountain Journal Math
, 1972, vol. 2, no. 3, pp. 372–421. DOI: 10.1216/RMJ-1972-2-3-379
Available at:
https://projecteuclid.org/euclid.rmjm/1250131560[5]
Shilov G.E., Fan Dyk Tin'. Integral, mera, proizvodnaya na lineynykh prostranstvakh
[Integral, measure, derivative in linear space]. Moscow, Nauka Publ., 1967. 220 p.
[6] Gel'fand I.M., Vilenkin
N.Ya.Nekotorye primeneniya garmonicheskogo analiza.
Osnashchennye gil'bertovy prostanstva [Some applications of Fourier analysis. Rigged Hilbert
spaces]. Moscow, Fizmatgiz Publ., 1961. 472 p.
[7] Birman
M.Sh., Solomyak M.Z. Spektral'naya teoriya samosopryazhennykh operatorov v
gil'bertovom prostranstve [Spectral theory of self-adjoint operators in Hilbert space].
Sankt-Petersburg, Lan' Publ., 2010. 464 p.
Ismagilov R.S.
— Dr. Sc. (Phys.-Math.), Professor of Higher Mathematics Department,
Bauman Moscow State Technical University (2-ya Baumanskaya ul. 5, Moscow, 105005 Rus-
sian Federation).
Filippova L.E.
—
Assoc. Professor, School of Applied Mathematics, Higher School of Eco-
nomics Tikhonov Moscow Institute of Electronics and Mathematics (Myasnitskaya ul. 20,
Moscow, 101000 Russian Federation).