Previous Page  28 / 31 Next Page
Information
Show Menu
Previous Page 28 / 31 Next Page
Page Background

А.В. Хохлов

120

ISSN 1812-3368. Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки. 2017. № 3

[3] Findley W.N., Lai J.S., Onaran K. Creep and relaxation of nonlinear viscoelastic materials. Am-

sterdam, North Holland, 1976. 368 p.

[4] Malinin N.N. Raschety na polzuchest' elementov mashinostroitel'nykh konstruktsiy [Creep

design of machine-building constructions elements]. Moscow, Mashinostroenie Publ., 1981.

221 p.

[5] Moskvitin V.V. Tsiklicheskoe nagruzhenie elementov konstruktsiy [Cyclic loading construc-

tive of parts]. Moscow, Nauka Publ., 1981. 344 p.

[6] Tschoegl N.W. The phenomenological theory of linear viscoelastic behavior. Berlin, Springer,

1989. 769 p.

[7] Betten J. Creep mechanics. Berlin–Heidelberg, Springer-Verlag, 2008. 367 p.

[8] Radchenko V.P., Kichaev P.E. Energeticheskaya kontseptsiya polzuchesti i vibropolzuchesti

metallov [Power conception of materials creep and vibrocreep]. Samara, SamSTU Publ., 2011.

157 p.

[9] Christensen R.M. Mechanics of composite materials. New York, Dover Publications, 2012.

384 p.

[10]

Bergstrom J.S. Mechanics of solid polymers. Theory and computational modeling. Elsevier,

William Andrew, 2015. 520 p.

[11]

Lokoshchenko A.M. Polzuchest' i dlitel'naya prochnost' metallov [Creep and long-term

strength of metals]. Moscow, Fizmatlit Publ., 2016. 504 p.

[12]

Rabotnov Yu.N. Some issues of creep theory.

Vestnik MGU

, 1948, no. 10, pp. 81–91 (in

Russ.).

[13]

Namestnikov V.S., Rabotnov Yu.N. On hereditary creep theories.

Prikladnaya mekhanika i

tekhnicheskaya fizika

, 1961, vol. 2, no. 4, pp. 148–150 (in Russ.).

[14]

Rabotnov Yu.N., Papernik L.Kh., Stepanychev E.I. Application of nonlinear heredity theory

to description theory in polymers.

Mekhanika polimerov

, 1971, no. 1, pp. 74–87 (in Russ.).

[15]

Dergunov N.N., Papernik L.Kh., Rabotnov Yu.N. Analysis of behavior of graphite on the

basis of nonlinear heredity theory.

Journal of Applied Mechanics and Technical Physics

, 1971,

vol. 12, no. 2, pp. 235–240. DOI: 10.1007/BF00850695

Available at:

http://link.springer.com/article/10.1007/BF00850695

[16]

Rabotnov Yu.N., Papernik L.Kh., Stepanychev E.I. Nonlinear creep of TS8/3-250 fiberglass.

Mekhanika polimerov

, 1971, no. 3, pp. 391–397 (in Russ.).

[17]

Rabotnov Yu.N., Papernik L.Kh., Stepanychev E.I. On connection between fiberglass creep

behavior and momentary deforming curve.

Mekhanika polimerov

, 1971, no. 4, pp. 624–628

(in Russ.).

[18]

Rabotnov Yu.N., Suvorova Yu.V. On metal deformation law under uniaxial loading.

Izvestiya AN SSSR. Mekhanika tverdogo tela

, 1972, no. 4, pp. 41–54 (in Russ.).

[19]

Rabotnov Yu.N. Elementy nasledstvennoy mekhaniki tverdykh tel [Elements of solid

mechanics hereditary theory]. Moscow, Nauka Publ., 1977. 384 p.

[20]

Mel'shanov A.F., Suvorova Yu.V., Khazanov S.Yu. Experimental verification of determining

equation for metals under loading and unloading.

Izvestiya AN SSSR. Mekhanika tverdogo tela

,

1974, no. 6, pp. 166–170 (in Russ.).

[21]

Suvorova Yu.V. Nonlinear effects in case of deformation of hereditary medium.

Mekhanika

polimerov

, 1977, no. 6, pp. 976–980 (in Russ.).